Embeddings of classes of continuous functions in classes of
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1049-1070 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is an investigation of necessary and sufficient conditions for embeddings of the function classes $H^\omega$ in classes of functions of bounded generalized variation. Theorems of a general character are obtained, along with embedding theorems under certain additional conditions imposed on the modulus of continuity.
@article{SM_2002_193_7_a4,
     author = {M. V. Medvedeva},
     title = {Embeddings of classes of continuous functions in classes of},
     journal = {Sbornik. Mathematics},
     pages = {1049--1070},
     year = {2002},
     volume = {193},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a4/}
}
TY  - JOUR
AU  - M. V. Medvedeva
TI  - Embeddings of classes of continuous functions in classes of
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1049
EP  - 1070
VL  - 193
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a4/
LA  - en
ID  - SM_2002_193_7_a4
ER  - 
%0 Journal Article
%A M. V. Medvedeva
%T Embeddings of classes of continuous functions in classes of
%J Sbornik. Mathematics
%D 2002
%P 1049-1070
%V 193
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a4/
%G en
%F SM_2002_193_7_a4
M. V. Medvedeva. Embeddings of classes of continuous functions in classes of. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1049-1070. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a4/

[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[2] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, Mass. J. Math., 3 (1924), 72–94 | Zbl

[3] Marcinkiewicz J., “On a class of functions and their Fourier series”, C. R. Soc. Sci. Varsovie, 26 (1934), 71–77 | Zbl

[4] Young L. C., “Sur une generalisation de la notion de variation de puissance $p$-ieme bornee au sens de M. Wiener, et sur la convergence des series de Fourier”, C. R. Acad. Sci. Paris, 204 (1937), 470–472 | Zbl

[5] Salem R., Essais sur les series trigonometriques, Hermann, Paris, 1940 | MR | Zbl

[6] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:2 (1972), 107–117 | MR | Zbl

[7] Medvedeva M. V., “O vlozhenii klassov $H^\omega$”, Matem. zametki, 64:5 (1998), 713–719 | MR | Zbl

[8] Belov A. S., “Sootnosheniya mezhdu razlichnymi klassami funktsii obobschennoi ogranichennoi variatsii”, Doklady rasshirennykh zasedanii seminara Instituta im. I. N. Vekua, 3, no. 2, Tbilisi, 1988, 11–14 | MR

[9] Berezhnoi E. I., “Prostranstva funktsii obobschennoi ogranichennoi variatsii. Teoremy vlozheniya. Otsenki konstant Lebega”, Sib. matem. zhurn., 40:5 (1999), 997–1011 | MR | Zbl

[10] Leindler L., “A note on embedding of classes $H^\omega$”, Anal. Math., 27:1 (2001), 71–76 | DOI | MR | Zbl

[11] Medvedeva M. V., “Usloviya vlozhenii klassov funktsii $H^\omega$ v klassy funktsii ogranichennoi obobschennoi variatsii”, Vestn. MGU. Ser.1. Matem., mekh., 2001, no. 2, 60–64 | MR

[12] Efimov A. V., “Lineinye metody priblizheniya nepreryvnykh periodicheskikh funktsii”, Matem. sb., 54:1 (1961), 51–90 | MR | Zbl

[13] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958

[14] Natanson I. P., Konstruktivnaya teoriya funktsii, Gos. izd. tekh.-teor. lit., M., 1949 | MR

[15] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968 | Zbl