Symmetric approximations of the~Navier--Stokes equations
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1027-1047

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for the symmetric approximation of the non-stationary Navier–Stokes equations by a Cauchy–Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as $\varepsilon\to0$ of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established.
@article{SM_2002_193_7_a3,
     author = {G. M. Kobel'kov},
     title = {Symmetric approximations of {the~Navier--Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {1027--1047},
     publisher = {mathdoc},
     volume = {193},
     number = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/}
}
TY  - JOUR
AU  - G. M. Kobel'kov
TI  - Symmetric approximations of the~Navier--Stokes equations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1027
EP  - 1047
VL  - 193
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/
LA  - en
ID  - SM_2002_193_7_a3
ER  - 
%0 Journal Article
%A G. M. Kobel'kov
%T Symmetric approximations of the~Navier--Stokes equations
%J Sbornik. Mathematics
%D 2002
%P 1027-1047
%V 193
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/
%G en
%F SM_2002_193_7_a3
G. M. Kobel'kov. Symmetric approximations of the~Navier--Stokes equations. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1027-1047. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/