Symmetric approximations of the Navier–Stokes equations
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1027-1047 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method for the symmetric approximation of the non-stationary Navier–Stokes equations by a Cauchy–Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as $\varepsilon\to0$ of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established.
@article{SM_2002_193_7_a3,
     author = {G. M. Kobel'kov},
     title = {Symmetric approximations of {the~Navier{\textendash}Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {1027--1047},
     year = {2002},
     volume = {193},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/}
}
TY  - JOUR
AU  - G. M. Kobel'kov
TI  - Symmetric approximations of the Navier–Stokes equations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1027
EP  - 1047
VL  - 193
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/
LA  - en
ID  - SM_2002_193_7_a3
ER  - 
%0 Journal Article
%A G. M. Kobel'kov
%T Symmetric approximations of the Navier–Stokes equations
%J Sbornik. Mathematics
%D 2002
%P 1027-1047
%V 193
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/
%G en
%F SM_2002_193_7_a3
G. M. Kobel'kov. Symmetric approximations of the Navier–Stokes equations. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1027-1047. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a3/

[1] Ladyzhenskaya O. A., Matematicheskie problemy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[2] Ladyzhenskaya O. A., Seregin G. A., “Ob odnom sposobe priblizhennogo resheniya nachalno-kraevykh zadach dlya uravnenii Nave–Stoksa”, Zapiski nauch. sem. LOMI, 197, Nauka, L., 1992, 87–119 | MR

[3] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychislitelnye protsessy i sistemy, 8, Nauka, M., 1991, 237–291 | MR

[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[5] Temam R., Navier–Stokes equaions. Theory and numerical analysis, North-Holland, Amsterdam, 1977 | MR

[6] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | Zbl

[7] Prohl A., Projection and quasi-compressibility methods for solving the incompressible Navier–Stokes equations, Teubner, Stuttgart, 1997 | MR | Zbl

[8] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zapiski nauch. sem. LOMI, 59, Nauka, L., 1976, 81–116 | MR | Zbl

[9] Kobelkov G. M., Valedinskii V. D., “On the inequality $\|p\|_{L_2}\le\sup_{{\mathbf v}\in\overset\circ\to{\mathbf W}^1_2} {(p,\operatorname{div}{\mathbf v})}/{\|{\mathbf v}\|_1}$ and its finite-dimensional image”, Soviet J. Numer. Anal. Math. Modelling, 1:3 (1986), 189–201 | MR

[10] Kobelkov G. M., “O chislennykh metodakh resheniya uravnenii Nave–Stoksa v peremennykh “skorost–davlenie””, Vychislitelnye protsessy i sistemy, 8, Nauka, M., 1991, 204–236 | MR

[11] Bakhvalov N. S., Kobelkov G. M., Chizhonkov E. V., “Effektivnye chislennye metody resheniya uravnenii Nave–Stoksa”, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1986, 37–45

[12] Kobelkov G. M., “O teoremakh suschestvovaniya dlya nekotorykh zadach teorii uprugosti”, Matem. zametki, 17:4 (1975), 599–609 | MR | Zbl

[13] Heywood J. G., Rannacher R., “Finite element approximation and of the nonstationary Navier–Stokes equations. II: Stability of solutions and error estimates uniform in time”, SIAM J. Numer. Anal., 23 (1986), 750–777 | DOI | MR | Zbl