Koenigs function and fractional iterates of probability generating functions
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1009-1025

Voir la notice de l'article provenant de la source Math-Net.Ru

The Koenigs function arises as the limit of an appropriately normalized sequence of iterates of holomorphic functions. On the other hand it is a solution of a certain functional equation and can be used for the definition of iterates of the original function. A description of the class of Koenigs functions corresponding to probability generating functions embeddable in a one-parameter group of fractional iterates is provided. The results obtained can be regarded as a test for the embeddability of a Galton–Watson process in a homogeneous Markov branching process.
@article{SM_2002_193_7_a2,
     author = {V. V. Goryainov},
     title = {Koenigs function and fractional iterates of probability generating functions},
     journal = {Sbornik. Mathematics},
     pages = {1009--1025},
     publisher = {mathdoc},
     volume = {193},
     number = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a2/}
}
TY  - JOUR
AU  - V. V. Goryainov
TI  - Koenigs function and fractional iterates of probability generating functions
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1009
EP  - 1025
VL  - 193
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a2/
LA  - en
ID  - SM_2002_193_7_a2
ER  - 
%0 Journal Article
%A V. V. Goryainov
%T Koenigs function and fractional iterates of probability generating functions
%J Sbornik. Mathematics
%D 2002
%P 1009-1025
%V 193
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a2/
%G en
%F SM_2002_193_7_a2
V. V. Goryainov. Koenigs function and fractional iterates of probability generating functions. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 1009-1025. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a2/