Boundary-value problem in a cylinder with frequently changing type of boundary
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 977-1008 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singularly perturbed boundary-value problem for the eigenvalues of the Laplace operator in a cylinder with a frequent change of the type of boundary conditions on the lateral surface is considered. The case when the homogenized problem involves the second or the third boundary condition on the lateral surface is studied. For a circular cylinder complete two-parameter asymptotic power series for the eigenvalues and the eigenfunctions of the perturbed problem are constructed. In the case when the section of the cylinder is an arbitrary bounded simply connected domain with smooth boundary, the leading terms of asymptotic formulae for eigenvalues convergent to simple limiting eigenvalues, and the leading terms of asymptotic formulae for the corresponding eigenfunctions are found.
@article{SM_2002_193_7_a1,
     author = {D. I. Borisov},
     title = {Boundary-value problem in a~cylinder with frequently changing type of boundary},
     journal = {Sbornik. Mathematics},
     pages = {977--1008},
     year = {2002},
     volume = {193},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a1/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - Boundary-value problem in a cylinder with frequently changing type of boundary
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 977
EP  - 1008
VL  - 193
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a1/
LA  - en
ID  - SM_2002_193_7_a1
ER  - 
%0 Journal Article
%A D. I. Borisov
%T Boundary-value problem in a cylinder with frequently changing type of boundary
%J Sbornik. Mathematics
%D 2002
%P 977-1008
%V 193
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a1/
%G en
%F SM_2002_193_7_a1
D. I. Borisov. Boundary-value problem in a cylinder with frequently changing type of boundary. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 977-1008. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a1/

[1] Lobo M., Pérez E., “Boundary homogenization of certain elliptic problems for cylindrical bodies”, Bull. Sci. Math., 116:2 (1992), 399–426 | MR | Zbl

[2] Lobo M., Pérez E., “Asymptotic behaviour of an elastic body with a surface having small stuck regions”, RAIRO Model. Math. Anal. Numer., 22:4 (1988), 609–624 | MR | Zbl

[3] Friedman A., Huang Ch., Yong J., “Effective permeability of the boundary of a domain”, Comm. Partial Differential Equations, 20:1–2 (1995), 59–102 | DOI | MR | Zbl

[4] Oleinik O. A., Chechkin G. A., “O kraevykh zadachakh dlya ellipticheskikh uravnenii s bystro menyayuschimsya tipom granichnykh uslovii”, UMN, 48:6 (1993), 163–164 | MR | Zbl

[5] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[6] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[7] Damlamian A., Li Ta-Tsien (Li Daqian), “Boundary homogenization for elliptic problems”, J. Math. Pures Appl. (9), 66 (1987), 351–361 | MR | Zbl

[8] Brillard A., Lobo M., Pérez E., “Un probleme d'homogenisation de frontieres en elasticite lineare pour un corps cylindrique”, C. R. Acad. Sci. Paris Sér. I Math., 299:17 (1984), 859–862 | MR

[9] Gadylshin R. R., “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19 | MR | Zbl

[10] Gadylshin R. R., “Asimptotiki sobstvennykh znachenii kraevoi zadachi s bystro ostsilliruyuschimi granichnymi usloviyami”, Diferents. uravneniya, 35:4 (1999), 540–551 | MR

[11] Borisov D. I., Gadylshin R. R., “O spektre laplasiana s chasto menyayuschimsya tipom granichnykh uslovii”, TMF, 118:3 (1999), 347–353 | MR | Zbl

[12] Borisov D. I., “O dvuparametricheskoi asimptotike v odnoi kraevoi zadache dlya laplasiana”, Matem. zametki, 70:4 (2001), 520–534 | MR | Zbl

[13] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[14] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[15] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[16] Borisov D. I., “The asymptotics for the eigenelements of the Laplacian in a cylinder with frequently alternating boundary conditions”, C. R. Acad. Sci. Paris Sér. IIb, 329:10 (2001), 717–721

[17] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949