@article{SM_2002_193_7_a0,
author = {V. I. Bogachev and M. R\"ockner and W. Stannat},
title = {Uniqueness of solutions of elliptic equations and},
journal = {Sbornik. Mathematics},
pages = {945--976},
year = {2002},
volume = {193},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a0/}
}
V. I. Bogachev; M. Röckner; W. Stannat. Uniqueness of solutions of elliptic equations and. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 945-976. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a0/
[1] Albeverio S., Bogachev V., Röckner M., “On uniqueness of invariant measures for finite- and infinite-dimensional diffusions”, Comm. Pure Appl. Math., 52 (1999), 325–362 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] Bogachev V. I., Krylov N. V., Röckner M., “Regularity of invariant measures: the case of non-constant diffusion part”, J. Funct. Anal., 138:1 (1996), 223–242 | DOI | MR | Zbl
[3] Bogachev V. I., Krylov N. V., Röckner M., “Elliptic regularity and essential self-adjointness of Dirichlet operators”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3 (1997), 451–461 | MR | Zbl
[4] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl
[5] Bogachev V. I., Krylov N. V., Rekner M., “Differentsiruemost invariantnykh mer i perekhodnykh veroyatnostei singulyarnykh diffuzii”, Dokl. RAN, 376:2 (2001), 151–154 | MR | Zbl
[6] Bogachev V. I., Röckner M., “Regularity of invariant measures on finite and infinite dimensional spaces and applications”, J. Funct. Anal., 133 (1995), 168–223 | DOI | MR | Zbl
[7] Bogachev V. I., Rekner M., “Obobschenie teoremy Khasminskogo o suschestvovanii invariantnykh mer dlya lokalno integriruemykh snosov”, Teoriya veroyatnostei i ee prim., 45:3 (2000), 417–436 | MR | Zbl
[8] Bogachev V. I., Röckner M., “Elliptic equations for measures on infinite-dimensional spaces and applications”, Probab. Theory Related Fields, 120:4 (2001), 445–496 | DOI | MR | Zbl
[9] Bogachev V. I., Röckner M., On $L^p$-uniqueness and essential self-adjointness of symmetric diffusion operators on Riemannian manifolds, Preprint BiBoS No 01-06-043, Univ. Bielefeld, Bielefeld, 2001 | MR
[10] Bogachev V. I., Röckner M., Stannat W., “Uniqueness of invariant measures and essential maximal dissipativity of diffusion operators on $L^1$”, Proceedings of the Colloquium “Infinite Dimensional Stochastic Analysis” (11–12 February 1999, Amsterdam), eds. Ph. Clément et al., Royal Netherlands Academy, Amsterdam, 2000, 39–54 | MR | Zbl
[11] Bogachev V. I., Röckner M., Wang F.-Y., “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl. (9), 80:2 (2001), 177–221 | DOI | MR | Zbl
[12] Bogachev V. I., Vang F.-Yu., Rekner M., “Ellipticheskie uravneniya, svyazannye s invariantnymi merami diffuzii na konechnomernykh i beskonechnomernykh mnogoobraziyakh”, Dokl. RAN, 378:4 (2001), 439–442 | MR | Zbl
[13] Bogachev V. I., Röckner M., Zhang T. S., “Existence and uniqueness of invariant measures: an approach via sectorial forms”, Appl. Math. Optim., 41 (2000), 87–109 | DOI | MR | Zbl
[14] Stannat W., “(Nonsymmetric) Dirichlet operators on $L^1$: existence, uniqueness and associated Markov processes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 99–140 | MR | Zbl
[15] Zhikov V. V., “Ob asimptoticheskikh zadachakh, svyazannykh s nedivergentnym parabolicheskim uravneniem vtorogo poryadka so sluchaino-odnorodnymi koeffitsientami”, Differents. uravneniya, 29:5 (1993), 859–869 | MR | Zbl
[16] Zhikov V. V., Sirazhudinov M. M., “Usrednenie nedivergentnykh ellipticheskikh i parabolicheskikh operatorov vtorogo poryadka i stabilizatsiya resheniya zadachi Koshi”, Matem. sb., 116:2 (1981), 166–186 | MR | Zbl
[17] Cabré X., “Nondivergent elliptic equations on manifolds with nonnegative curvature”, Comm. Pure Appl. Math., 50 (1997), 623–665 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[18] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Mir, M., 1986 | MR
[19] Azencott R., “Behavior of diffusion semi-groups at infinity”, Bull. Soc. Math. France, 102 (1974), 193–240 | MR | Zbl
[20] Davies E. B., “$L^1$-properties of second order elliptic operators”, Bull. London Math. Soc., 17 (1985), 417–436 | DOI | MR | Zbl
[21] Kovalenko V. F., Semenov Yu. A., “$C_0$-polugruppy v prostranstvakh $L^p(\mathbb R^d)$ i $\widehat C(\mathbb R^d)$, porozhdaemye differentsialnym vyrazheniem $\Delta+b\cdot\nabla^*$”, Teoriya veroyatnostei i ee prim., 35:3 (1990), 449–458 | MR | Zbl
[22] Perelmuter M. A., Semenov Yu. A., “Ellipticheskie operatory, sokhranyayuschie veroyatnost”, Teoriya veroyatnostei i ee prim., 32:4 (1987), 786–789 | MR
[23] Chung L. O., “Existence of harmonic $L^1$ functions in complete Riemannian manifolds”, Proc. Amer. Math. Soc., 88 (1983), 531–532 | DOI | MR | Zbl
[24] Grigor'yan A., “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc. (N.S.), 36:2 (1999), 135–249 | DOI | MR | Zbl
[25] Li P., Schoen R., “$L^p$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153 (1984), 279–301 | DOI | MR | Zbl
[26] Eberle A., Uniqueness and non-uniqueness of singular diffusion operators, Lecture Notes in Math., 1718, Springer-Verlag, Berlin, 1999 | MR
[27] Klement F., Kheimans Kh., Angenent S., van Duin K., de Pakhter B., Odnoparametricheskie polugruppy, Mir, M., 1992 | MR
[28] Adams R. A., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl
[29] Aubin T., Nonlinear analysis on manifolds. Monge–Ampère equations, Springer-Verlag, New York, 1982 | MR
[30] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[31] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[32] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR
[33] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1985 | MR
[34] Arendt W., The abstract Cauchy problem, special semigroups and perturbation. One-parameter semigroups of positive operators, ed. R. Nagel, Springer-Verlag, Berlin, 1986 | Zbl
[35] Chicco M., “Solvability of the Dirichlet problem in $H^{2,p}(\Omega)$ for a class of linear second order elliptic partial differential equations”, Boll. Unione Mat. Ital. (4), 4 (1971), 374–387 | MR | Zbl
[36] Varadhan S. R. S., Lectures on diffusion problems and partial differential equations, Tata Institute of Fundamental Research, Bombay, 1980 | MR | Zbl
[37] Cattiaux P., Fradon M., “Entropy, reversible diffusion processes and Markov uniqueness”, J. Funct. Anal., 138 (1996), 243–272 | DOI | MR | Zbl
[38] Liskevich V., “On the uniqueness problem for Dirichlet operators”, J. Funct. Anal., 162 (1999), 1–13 | DOI | MR | Zbl
[39] Röckner M., Zhang T.-S., “Uniqueness of generalized Schrödinger operators and applications”, J. Funct. Anal., 119 (1994), 455–467 | DOI | MR | Zbl
[40] Khasminskii R. Z., “Ergodicheskie svoistva vozvratnykh diffuzionnykh protsessov i stabilizatsiya reshenii zadachi Koshi dlya parabolicheskikh uravnenii”, Teoriya veroyatnostei i ee prim., 5:2 (1960), 196–214 | MR
[41] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR
[42] Stannat W., Time-dependent diffusion operators on $L^1$, Preprint No 00-080 SFB 343, Univ. Bielefeld, Bielefeld, 2000 | MR
[43] Da Prato G., Zabczyk J., Ergodicity for infinite dimensional systems, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[44] Hino M., “Existence of invariant measures for diffusion processes on a Wiener space”, Osaka J. Math., 35:3 (1998), 717–734 | MR | Zbl
[45] Röckner M., “$L^p$-analysis of finite and infinite dimensional diffusion operators”, Stochastic PDE's and Kolmogorov equations in infinite dimensions, Lecture Notes in Math., 1715, ed. G. Da Prato, Springer-Verlag, New York, 1999, 65–116 | MR | Zbl
[46] Shigekawa I., “Existence of invariant measures of diffusions”, Osaka J. Math., 24:1 (1987), 37–59 | MR | Zbl