Uniqueness of solutions of elliptic equations and
Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 945-976

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a complete connected Riemannian manifold of dimension $d$ and let $L$ be a second order elliptic operator on $M$ that has a representation $L=a^{ij}\partial_{x_i}\partial_{x_j}+b^i\partial_{x_i}$ in local coordinates, where $a^{ij}\in H^{p,1}_{\mathrm{loc}}$, $b^i\in L^p_{\text{loc}}$ for some $p>d$, and the matrix $(a^{ij})$ is non-singular. The aim of the paper is the study of the uniqueness of a solution of the elliptic equation $L^*\mu=0$ for probability measures $\mu$, which is understood in the weak sense: $\displaystyle\int L\varphi f\,d\mu=0$ for all $\varphi\in C_0^\infty(M)$. In addition, the uniqueness of invariant probability measures for the corresponding semigroups $(T_t^\mu)_{t\geqslant 0}$ generated by the operator $L$ is investigated. It is proved that if a probability measure $\mu$ on $M$ satisfies the equation $L^*\mu=0$ and $(L-I)\bigl(C^\infty_0(M)\bigr)$ is dense in $L^1(M,\mu)$, then $\mu$ is a unique solution of this equation in the class of probability measures. Examples are presented (even with $a^{ij}=\delta^{ij}$ and smooth $b^i$) in which the equation $L^*\mu=0$ has more than one solution in the class of probability measures. Finally, it is shown that if $p>d+2$, then the semigroup $(T_t)_{t\geqslant 0}$ generated by $L$ has at most one invariant probability measure.
@article{SM_2002_193_7_a0,
     author = {V. I. Bogachev and M. R\"ockner and W. Stannat},
     title = {Uniqueness of solutions of elliptic equations and},
     journal = {Sbornik. Mathematics},
     pages = {945--976},
     publisher = {mathdoc},
     volume = {193},
     number = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_7_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - M. Röckner
AU  - W. Stannat
TI  - Uniqueness of solutions of elliptic equations and
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 945
EP  - 976
VL  - 193
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_7_a0/
LA  - en
ID  - SM_2002_193_7_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A M. Röckner
%A W. Stannat
%T Uniqueness of solutions of elliptic equations and
%J Sbornik. Mathematics
%D 2002
%P 945-976
%V 193
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_7_a0/
%G en
%F SM_2002_193_7_a0
V. I. Bogachev; M. Röckner; W. Stannat. Uniqueness of solutions of elliptic equations and. Sbornik. Mathematics, Tome 193 (2002) no. 7, pp. 945-976. http://geodesic.mathdoc.fr/item/SM_2002_193_7_a0/