Weakly invertible elements in anisotropic weighted spaces
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 925-943

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of weak invertibility is studied in weighted $L^p$-spaces of holomorphic functions in a polydisc. A complete description of weight functions such that each non-vanishing bounded holomorphic function in a polydisc is weakly invertible in the corresponding spaces is obtained. In addition, it is shown for $n\geqslant 2$ that, by contrast with the one-dimensional case, the weak invertibility of outer functions is equivalent in a certain sense to the weak invertibility of inner functions.
@article{SM_2002_193_6_a7,
     author = {F. A. Shamoyan},
     title = {Weakly invertible elements in anisotropic weighted spaces},
     journal = {Sbornik. Mathematics},
     pages = {925--943},
     publisher = {mathdoc},
     volume = {193},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a7/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - Weakly invertible elements in anisotropic weighted spaces
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 925
EP  - 943
VL  - 193
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a7/
LA  - en
ID  - SM_2002_193_6_a7
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T Weakly invertible elements in anisotropic weighted spaces
%J Sbornik. Mathematics
%D 2002
%P 925-943
%V 193
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a7/
%G en
%F SM_2002_193_6_a7
F. A. Shamoyan. Weakly invertible elements in anisotropic weighted spaces. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 925-943. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a7/