Trace representation of linear recurring sequences
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 907-924 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of a trace representation of linear recurring sequences over commutative linear rings and modules over such rings is studied. The trace function itself is expressed in terms of automorphisms and in terms of $p$-adic expansions.
@article{SM_2002_193_6_a6,
     author = {V. L. Kurakin},
     title = {Trace representation of linear recurring sequences},
     journal = {Sbornik. Mathematics},
     pages = {907--924},
     year = {2002},
     volume = {193},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Trace representation of linear recurring sequences
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 907
EP  - 924
VL  - 193
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/
LA  - en
ID  - SM_2002_193_6_a6
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Trace representation of linear recurring sequences
%J Sbornik. Mathematics
%D 2002
%P 907-924
%V 193
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/
%G en
%F SM_2002_193_6_a6
V. L. Kurakin. Trace representation of linear recurring sequences. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 907-924. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/

[1] Lidl R., Niderraiter G., Konechnye polya, T. 2, Mir, M., 1988 | Zbl

[2] Nechaev A. A., “Funktsiya “sled” v koltse Galua i pomekhoustoichivye kody”, V Vsesoyuzn. simpozium po teorii kolets, algebr i modulei, Tezisy soobschenii, Novosibirsk, 1982, 97

[3] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskret. matem., 1:4 (1989), 123–139 | MR | Zbl

[4] Nechaev A. A., Kuzmin A. S., Kurakin V. L., “Strukturnye, analiticheskie i statisticheskie svoistva lineinykh i polilineinykh rekurrent”, Trudy po diskretnoi matematike, 3, Izd-vo TVP, M., 2000, 155–194

[5] Kamlovskii O. V., Kuzmin A. S., “Raspredelenie elementov na tsiklakh lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, UMN, 53:2 (1998), 149–150 | MR | Zbl

[6] Kurakin V., Kuzmin A., Nechaev A., “Codes and linear recurrences over Galois rings and $QF$-modules of the characteristic 4”, Proceedings of the Sixth International workshop on algebraic and combinatorial coding theory (ACCT-VI) (Pskov, Russia, September 6–12, 1998), MTNTI, Moskva, 1998, 166–171

[7] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci. (New York), 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[8] Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A., Sole P., “The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Trans. Inform. Theory, 40:2 (1994), 301–319 | DOI | MR | Zbl

[9] Nechaev A. A., Kuzmin A. S., “Trace-function on a Galois ring in coding theory”, Lecture Notes in Comput. Sci., 1255, 1997, 277–290 | MR | Zbl

[10] Borevich A. Z., Tolasov B. A., Vvedenie v teoriyu Galua kolets, Severo-Osetinskii gosudarstvennyi universitet im. K. L. Khetagurova, Ordzhonikidze, 1984

[11] DeMeyer F., Ingraham E., Separable algebras over commutative rings, Lecture Notes in Math., 181, Springer-Verlag, Berlin, 1971 | MR | Zbl

[12] Kash F., Moduli i koltsa, Mir, M., 1981 | MR

[13] Leng S., Algebra, Mir, M., 1968

[14] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[15] Snapper E., “Completely primary rings. I; II; III; IV”, Ann. of Math. (2), 52:3 (1950), 666–693 ; 53:1 (1951), 125–142 ; 53:2 (1951), 207–234 ; 55:1 (1952), 46–64 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[16] Janusz G. J., “Separable algebras over commutative ring”, Trans. Amer. Math. Soc., 122 (1966), 461–479 | DOI | MR | Zbl

[17] McDonald B. R., Finite rings with identity, Marcel Dekker, New York, 1974 | MR

[18] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[19] Kurakin V. L., “Binomialnoe predstavlenie lineinykh rekurrentnykh posledovatelnostei”, Fundam. i prikl. matem., 1:2 (1995), 553–556 | MR | Zbl