Trace representation of linear recurring sequences
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 907-924

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility of a trace representation of linear recurring sequences over commutative linear rings and modules over such rings is studied. The trace function itself is expressed in terms of automorphisms and in terms of $p$-adic expansions.
@article{SM_2002_193_6_a6,
     author = {V. L. Kurakin},
     title = {Trace representation of linear recurring sequences},
     journal = {Sbornik. Mathematics},
     pages = {907--924},
     publisher = {mathdoc},
     volume = {193},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Trace representation of linear recurring sequences
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 907
EP  - 924
VL  - 193
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/
LA  - en
ID  - SM_2002_193_6_a6
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Trace representation of linear recurring sequences
%J Sbornik. Mathematics
%D 2002
%P 907-924
%V 193
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/
%G en
%F SM_2002_193_6_a6
V. L. Kurakin. Trace representation of linear recurring sequences. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 907-924. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a6/