Infinite-dimensional version of Morse theory for Lipschitz functionals
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 889-906 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The type numbers of critical points of Lipschitz functionals defined on finite-defect submanifolds of a separable reflexive space are studied. Variants of the Morse inequalities are established. It is shown that the topological index of an isolated critical point is equal to the alternated sum of its type numbers.
@article{SM_2002_193_6_a5,
     author = {V. S. Klimov},
     title = {Infinite-dimensional version of {Morse} theory for {Lipschitz} functionals},
     journal = {Sbornik. Mathematics},
     pages = {889--906},
     year = {2002},
     volume = {193},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Infinite-dimensional version of Morse theory for Lipschitz functionals
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 889
EP  - 906
VL  - 193
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/
LA  - en
ID  - SM_2002_193_6_a5
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Infinite-dimensional version of Morse theory for Lipschitz functionals
%J Sbornik. Mathematics
%D 2002
%P 889-906
%V 193
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/
%G en
%F SM_2002_193_6_a5
V. S. Klimov. Infinite-dimensional version of Morse theory for Lipschitz functionals. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 889-906. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/

[1] Palais R. S., Smale S., “A generalized Morse theory”, Bull. Amer. Math. Soc. (N. S.), 70:1 (1964), 165–172 | DOI | MR | Zbl

[2] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973 | MR

[3] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[4] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Magistr, M., 1998

[5] Pokhozhaev S. I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funkts. analiz i ego prilozh., 1:3 (1967), 66–73 | MR | Zbl

[6] Browder F. E., “Nonlinear elliptic boundary value problems and the generalized topological degree”, Bull. Amer. Math. Soc. (N. S.), 76:5 (1970), 999–1005 | DOI | MR | Zbl

[7] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[8] Klimov V. S., “O topologicheskikh kharakteristikakh negladkikh funktsionalov”, Izv. RAN. Ser. matem., 62:5 (1998), 117–134 | MR | Zbl

[9] Klimov V. S., Senchakova N. V., “Ob otnositelnom vraschenii mnogoznachnykh potentsialnykh vektornykh polei”, Matem. sb., 182:10 (1991), 1393–1407 | MR

[10] Klimov V. S., “Beskonechnomernyi variant teoremy Puankare–Khopfa i gomologicheskie kharakteristiki funktsionalov”, Matem. sb., 192:1 (2001), 51–66 | MR | Zbl

[11] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[12] Milnor Dzh., Uolles A., Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972 | MR | Zbl

[13] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[15] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[16] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[17] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR

[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[19] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[20] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[21] Sobolev S. L., nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[22] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl