Infinite-dimensional version of Morse theory for Lipschitz functionals
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 889-906

Voir la notice de l'article provenant de la source Math-Net.Ru

The type numbers of critical points of Lipschitz functionals defined on finite-defect submanifolds of a separable reflexive space are studied. Variants of the Morse inequalities are established. It is shown that the topological index of an isolated critical point is equal to the alternated sum of its type numbers.
@article{SM_2002_193_6_a5,
     author = {V. S. Klimov},
     title = {Infinite-dimensional version of {Morse} theory for {Lipschitz} functionals},
     journal = {Sbornik. Mathematics},
     pages = {889--906},
     publisher = {mathdoc},
     volume = {193},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Infinite-dimensional version of Morse theory for Lipschitz functionals
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 889
EP  - 906
VL  - 193
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/
LA  - en
ID  - SM_2002_193_6_a5
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Infinite-dimensional version of Morse theory for Lipschitz functionals
%J Sbornik. Mathematics
%D 2002
%P 889-906
%V 193
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/
%G en
%F SM_2002_193_6_a5
V. S. Klimov. Infinite-dimensional version of Morse theory for Lipschitz functionals. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 889-906. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/