Infinite-dimensional version of Morse theory for Lipschitz functionals
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 889-906
Voir la notice de l'article provenant de la source Math-Net.Ru
The type numbers of critical points of Lipschitz functionals defined on finite-defect
submanifolds of a separable reflexive space are studied. Variants of the Morse inequalities are established. It is shown that the topological index of an isolated critical point is equal to the alternated sum of its type numbers.
@article{SM_2002_193_6_a5,
author = {V. S. Klimov},
title = {Infinite-dimensional version of {Morse} theory for {Lipschitz} functionals},
journal = {Sbornik. Mathematics},
pages = {889--906},
publisher = {mathdoc},
volume = {193},
number = {6},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/}
}
V. S. Klimov. Infinite-dimensional version of Morse theory for Lipschitz functionals. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 889-906. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a5/