On non-orientable two-dimensional basic sets on~3-manifolds
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 869-888
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a structurally stable diffeomorphism $f\colon M^3\to M^3$ of a closed three-dimensional manifold $M^3$ does not contain in the spectral decomposition
non-orientable expanding attractors or contracting repellers of codimension one.
@article{SM_2002_193_6_a4,
author = {E. V. Zhuzhoma and V. S. Medvedev},
title = {On non-orientable two-dimensional basic sets on~3-manifolds},
journal = {Sbornik. Mathematics},
pages = {869--888},
publisher = {mathdoc},
volume = {193},
number = {6},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a4/}
}
E. V. Zhuzhoma; V. S. Medvedev. On non-orientable two-dimensional basic sets on~3-manifolds. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 869-888. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a4/