Conservative systems of integral convolution equations
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 847-867

Voir la notice de l'article provenant de la source Math-Net.Ru

The following system of integral convolution equations is considered: $$ f(x)=g(x)+\int_a^\infty K(x-t)f(t)\,dt, \qquad -\infty\leqslant a\infty, $$ where the $(m\times m)$-matrix-valued function $K$ satisfies the conditions of conservativeness $$ K_{ij}\in L_1(\mathbb R), \quad K_{ij}\geqslant 0, \qquad A\equiv\int_{-\infty}^\infty K(x)\,dx\in P_N, \qquad r(A)=1. $$ Here $P_N$ is the class of non-negative indecomposable $(m\times m)$-matrices and $r(A)$ is the spectral radius of the matrix $A$. For $a=0$ the equation in question is a conservative system of Wiener–Hopf integral equations. For $a=-\infty$ this is the multidimensional renewal equation on the entire line. Questions of the solubility of the inhomogeneous and the homogeneous equations, asymptotic and other properties of solutions are considered. The method of non-linear factorization equations is applied and developed in combination with new results in multidimensional renewal theory.
@article{SM_2002_193_6_a3,
     author = {N. B. Engibaryan},
     title = {Conservative systems of integral convolution equations},
     journal = {Sbornik. Mathematics},
     pages = {847--867},
     publisher = {mathdoc},
     volume = {193},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Conservative systems of integral convolution equations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 847
EP  - 867
VL  - 193
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/
LA  - en
ID  - SM_2002_193_6_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Conservative systems of integral convolution equations
%J Sbornik. Mathematics
%D 2002
%P 847-867
%V 193
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/
%G en
%F SM_2002_193_6_a3
N. B. Engibaryan. Conservative systems of integral convolution equations. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 847-867. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/