Conservative systems of integral convolution equations
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 847-867 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following system of integral convolution equations is considered: $$ f(x)=g(x)+\int_a^\infty K(x-t)f(t)\,dt, \qquad -\infty\leqslant a<\infty, $$ where the $(m\times m)$-matrix-valued function $K$ satisfies the conditions of conservativeness $$ K_{ij}\in L_1(\mathbb R), \quad K_{ij}\geqslant 0, \qquad A\equiv\int_{-\infty}^\infty K(x)\,dx\in P_N, \qquad r(A)=1. $$ Here $P_N$ is the class of non-negative indecomposable $(m\times m)$-matrices and $r(A)$ is the spectral radius of the matrix $A$. For $a=0$ the equation in question is a conservative system of Wiener–Hopf integral equations. For $a=-\infty$ this is the multidimensional renewal equation on the entire line. Questions of the solubility of the inhomogeneous and the homogeneous equations, asymptotic and other properties of solutions are considered. The method of non-linear factorization equations is applied and developed in combination with new results in multidimensional renewal theory.
@article{SM_2002_193_6_a3,
     author = {N. B. Engibaryan},
     title = {Conservative systems of integral convolution equations},
     journal = {Sbornik. Mathematics},
     pages = {847--867},
     year = {2002},
     volume = {193},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Conservative systems of integral convolution equations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 847
EP  - 867
VL  - 193
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/
LA  - en
ID  - SM_2002_193_6_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Conservative systems of integral convolution equations
%J Sbornik. Mathematics
%D 2002
%P 847-867
%V 193
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/
%G en
%F SM_2002_193_6_a3
N. B. Engibaryan. Conservative systems of integral convolution equations. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 847-867. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/

[1] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR | Zbl

[2] Spitzer F., “The Wiener–Hopf equation, whose kernel is a probability density”, Duke Math. J., 24:3 (1957), 323–343 | DOI | MR

[3] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR

[4] Engibaryan N. B., Arutyunyan A. A., “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97:1 (1975), 35–58 | MR | Zbl

[5] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya svertki i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Matem. analiz, 22, VINITI, M., 1984, 175–240 | MR

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | Zbl

[7] Rudin V., Funktsionalnyi analiz, Mir, M., 1975 | MR

[8] Stone C. J., “On absolutely continuous components and renewal theory”, Ann. Math. Statist., 37 (1966), 271–275 | DOI | MR | Zbl

[9] Yengibarian N. B., “Renewal equation on the whole line”, Stochastic Process. Appl., 85 (2000), 237–247 | DOI | MR | Zbl

[10] Gokhberg I. Ts., Krein M. G., “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:2 (1958), 3–72 | MR

[11] Engibaryan N. B., “Faktorizatsiya matrits-funktsii i nelineinye integralnye uravneniya”, Izv. AN Arm. SSR. Ser. matem., 15:3 (1980), 233–244 | MR | Zbl

[12] Engibaryan N. B., Arabadzhyan L. G., “Sistemy integralnykh uravnenii Vinera–Khopfa i nelineinye uravneniya faktorizatsii”, Matem. sb., 124 (166):2 (6) (1984), 189–216 | MR | Zbl

[13] Engibaryan N. B., “Teoremy vosstanovleniya dlya sistemy integralnykh uravnenii”, Matem. sb., 189:12 (1998), 59–72 | MR | Zbl

[14] Engibaryan N. B., “Asimptoticheskie i strukturnye teoremy dlya uravneniya markovskogo vosstanovleniya”, Teoriya veroyatn. i ee primen. (to appear)

[15] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[16] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[17] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[18] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[19] Arabadzhyan L. G., “O faktorizatsii konservativnykh integralnykh operatorov Vinera–Khopfa”, Matem. zametki, 46:1 (1989), 3–10 | MR | Zbl

[20] Korolyuk V. S., Brodi S. M., Turbin A. F., “Polumarkovskie protsessy i ikh primenenie”, Itogi nauki i tekhniki. Teoriya veroyatnostei, matem. statistika, kibernetika, 11, VINITI, M., 1974, 47–97

[21] Sevastyanov B. A., Chistyakov V. P., “Uravneniya mnogomernogo vosstanovleniya i momenty vetvyaschikhsya protsessov”, Teoriya veroyatn. i ee primen., 16:2 (1971), 201–217 | MR | Zbl

[22] Grigoryan G. A., “Razreshimost odnogo klassa integralnykh uravnenii Vinera–Khopfa”, Izv. NAN RA. Matem., 31:2 (1996), 27–39 | MR | Zbl

[23] Sobolev V. V., Kurs teoreticheskoi astrofiziki, Nauka, M., 1985