Conservative systems of integral convolution equations
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 847-867
Voir la notice de l'article provenant de la source Math-Net.Ru
The following system of integral convolution equations is
considered:
$$
f(x)=g(x)+\int_a^\infty K(x-t)f(t)\,dt, \qquad
-\infty\leqslant a\infty,
$$
where the $(m\times m)$-matrix-valued function $K$ satisfies the conditions of conservativeness
$$
K_{ij}\in L_1(\mathbb R), \quad
K_{ij}\geqslant 0, \qquad
A\equiv\int_{-\infty}^\infty K(x)\,dx\in P_N, \qquad
r(A)=1.
$$
Here $P_N$ is the class of non-negative indecomposable $(m\times m)$-matrices and $r(A)$
is the spectral radius of the matrix $A$. For $a=0$ the equation in question is a conservative system of Wiener–Hopf integral equations.
For $a=-\infty$ this is the multidimensional renewal equation on the entire line.
Questions of the solubility of the inhomogeneous and the homogeneous equations, asymptotic and other properties of solutions are considered.
The method of non-linear factorization equations is applied and developed in combination with new results in multidimensional renewal theory.
@article{SM_2002_193_6_a3,
author = {N. B. Engibaryan},
title = {Conservative systems of integral convolution equations},
journal = {Sbornik. Mathematics},
pages = {847--867},
publisher = {mathdoc},
volume = {193},
number = {6},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/}
}
N. B. Engibaryan. Conservative systems of integral convolution equations. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 847-867. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a3/