Tests for the similarity of all minimal passive realizations of
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 791-810 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for the transfer function of a passive linear stationary scattering (or resistance) system are found ensuring that minimal systems in this class are determined by their transfer functions up to similarity. The criteria are stated in terms of a Hankel operator the symbol of which is a contractive operator-valued function defined by the transfer function and having the meaning of the inner scattering suboperator of a simple conservative scattering (respectively, resistance) system with the transfer function in question. A connection between the similarity criterion and the corona theorem and its matrix generalizations is revealed.
@article{SM_2002_193_6_a0,
     author = {D. Z. Arov and M. A. Nudelman},
     title = {Tests for the~similarity of all minimal passive realizations of},
     journal = {Sbornik. Mathematics},
     pages = {791--810},
     year = {2002},
     volume = {193},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a0/}
}
TY  - JOUR
AU  - D. Z. Arov
AU  - M. A. Nudelman
TI  - Tests for the similarity of all minimal passive realizations of
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 791
EP  - 810
VL  - 193
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a0/
LA  - en
ID  - SM_2002_193_6_a0
ER  - 
%0 Journal Article
%A D. Z. Arov
%A M. A. Nudelman
%T Tests for the similarity of all minimal passive realizations of
%J Sbornik. Mathematics
%D 2002
%P 791-810
%V 193
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a0/
%G en
%F SM_2002_193_6_a0
D. Z. Arov; M. A. Nudelman. Tests for the similarity of all minimal passive realizations of. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 791-810. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a0/

[1] Arov D. Z., “Passivnye lineinye statsionarnye dinamicheskie sistemy”, Sib. matem. zhurn., 20:2 (1979), 211–228 | MR | Zbl

[2] Arov D. Z., “A survey on passive networks and scattering systems which are lossless or have minimal losses”, Archiv für Elektronik und Übertragungstechnik. Internat. J. Electronics Commun., 49:5/6 (1995), 252–265

[3] Arov D. Z., “Passive linear systems and scattering theory”, Dynamical systems, control, coding, computing vision, Progr. Systems Control Theory, 25, Birkhäuser, Basel, 1999, 27–44 | MR

[4] Livshits M. S., Operatory, kolebaniya, volny. Otkrytye sistemy, Nauka, M., 1966 | MR | Zbl

[5] Willems J. C., “Dissipative dynamical systems. I: General theory”, Arch. Rational Mech. Anal., 45 (1972), 321–351 | DOI | MR

[6] Hill D. J., Moylan P. J., “Dissipative dynamical systems: basic input-output and state properties”, J. Franklin Inst., 309 (1980), 327–357 | DOI | MR | Zbl

[7] Helton J. W., “The characteristic functions of operator theory and electrical network realization”, Indiana Univ. Math. J., 22 (1972), 403–404 | DOI | MR

[8] Helton J. W., “Discrete time systems, operator models, and scattering theory”, J. Funct. Anal., 16 (1974), 15–38 | DOI | MR | Zbl

[9] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR | Zbl

[10] Arov D. Z., Nudelman M. A., “Passive linear stationary dynamical scattering systems with continuous time”, Integral Equations Operator Theory, 24 (1996), 1–45 | DOI | MR | Zbl

[11] Arov D. Z., Nudelman M. A., “Kriterii unitarnogo podobiya minimalnykh passivnykh sistem rasseyaniya s zadannoi peredatochnoi funktsiei”, Ukr. matem. zhurn., 52:2 (2000), 147–156 | MR | Zbl

[12] Arov D. Z., “Usloviya podobiya vsekh minimalnykh passivnykh sistem rasseyaniya s zadannoi matritsei rasseyaniya”, Funkts. analiz i ego prilozh., 34:4 (2000), 71–74 | MR | Zbl

[13] Ball J. A., Cohen N., “De Branges–Rovnyak operator models and systems theory: A survey”, Oper. Theory Adv. Appl., 50 (1991), 93–136 | MR | Zbl

[14] Arov D. Z., “Ustoichivye dissipativnye lineinye statsionarnye dinamicheskie sistemy rasseyaniya”, J. Operator Theory, 1 (1979), 95–126 | MR

[15] Arov D. Z., Kaashoek M. A., Pik D. R., “Minimal and optimal linear discrete time-invariant dissipative scattering systems”, Integral Equations Operator Theory, 29 (1997), 127–154 | DOI | MR | Zbl

[16] Nad B. S., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[17] Arov D. Z., “Optimalnye i ustoichivye passivnye sistemy”, Dokl. AN SSSR, 247 (1979), 265–268 | MR | Zbl

[18] Adamyan V. M., Arov D. Z., “Unitarnye stsepleniya prostykh poluunitarnykh operatorov”, Matematicheskie issledovaniya, 1, no. 2, Kishinev, 1966, 3–64 | MR

[19] Arov D. Z., “Teoriya rasseyaniya s dissipatsiei energii”, Dokl. AN SSSR, 216:4 (1974), 713–716 | MR | Zbl

[20] Boiko S. S., Dubovoj V. K., “On some extremal problem connected with the suboperator of the scattering through inner channels of the system”, Dopovidi NAN Ukr., 4 (1997), 7–11 | MR | Zbl

[21] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[22] Rosenblum M., Rovnyak J., Hardy classes and operator theory, Oxford Univ. Press, New York, 1985 | MR | Zbl

[23] Fuhrmann P. A., Linear systems and operator in Hilbert space, McGraw-Hill, New York, 1981 | MR | Zbl