Total log canonical thresholds and generalized Eckardt points
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 779-789 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a smooth hypersurface of degree $n\geqslant 3$ in ${\mathbb P}^n$. It is proved that the log canonical threshold of an arbitrary hyperplane section $H$ of it is at least $(n-1)/n$. Under the assumption of the log minimal model program it is also proved that the log canonical threshold of $H\subset X$ is $(n-1)/n$ if and only if $H$ is a cone in ${\mathbb P}^{n-1}$ over a smooth hypersurface of degree $n$ in ${\mathbb P}^{n-2}$.
@article{SM_2002_193_5_a8,
     author = {I. A. Cheltsov and J. Park},
     title = {Total log canonical thresholds and generalized {Eckardt} points},
     journal = {Sbornik. Mathematics},
     pages = {779--789},
     year = {2002},
     volume = {193},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - J. Park
TI  - Total log canonical thresholds and generalized Eckardt points
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 779
EP  - 789
VL  - 193
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/
LA  - en
ID  - SM_2002_193_5_a8
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A J. Park
%T Total log canonical thresholds and generalized Eckardt points
%J Sbornik. Mathematics
%D 2002
%P 779-789
%V 193
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/
%G en
%F SM_2002_193_5_a8
I. A. Cheltsov; J. Park. Total log canonical thresholds and generalized Eckardt points. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 779-789. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/

[1] Shokurov V. V., “Trekhmernye log-perestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–201 | MR | Zbl

[2] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl

[3] Kollár J., “Singularities of pairs”, Algebraic geometry, Proc. Summer Research Institute (Santa Cruz, CA, USA. July 9–29, 1995), Proc. Symp. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl

[4] Björk J. E., Rings of differential operators, North-Holland, Amsterdam, 1979 | MR | Zbl

[5] Mustata M., Jet schemes of locally complete intersection canonical singularities, Preprint, 2000 | MR

[6] Keel S., McKernan J., Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc., 669, 1999 | MR

[7] Park J., “Birational maps of del Pezzo fibrations”, J. Reine Angew. Math., 538 (2001), 213–221 | MR | Zbl

[8] Corti A., “Del Pezzo surfaces over Dedekind schemes”, Ann. of Math. (2), 144:3 (1996), 641–683 | DOI | MR | Zbl

[9] Pukhlikov A. V., “Zamechanie o teoreme V. A. Iskovskikh i Yu. I. Manina o trekhmernoi kvartike”, Tr. MIAN, 208, Nauka, M., 1995, 278–289 | MR | Zbl

[10] Ambro F., “Ladders on Fano varieties”, J. Math. Sci. (New York), 94 (1999), 1126–1135 | DOI | MR | Zbl

[11] Shokurov V. V., Pisma biratsionalista, IV, Preprint, 2001 | Zbl

[12] Corti A., “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4 (1995), 223–254 | MR | Zbl

[13] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86 (1971), 140–166 | MR | Zbl

[14] Pukhlikov A. V., “Birational isomorphisms of four-dimensional quintic”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl

[15] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134 (1998), 401–426 | DOI | MR | Zbl

[16] Cheltsov I. A., “O gladkoi chetyrekhmernoi kvintike”, Matem. sb., 191:9 (2000), 139–160 | MR | Zbl