Total log canonical thresholds and generalized Eckardt points
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 779-789

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a smooth hypersurface of degree $n\geqslant 3$ in ${\mathbb P}^n$. It is proved that the log canonical threshold of an arbitrary hyperplane section $H$ of it is at least $(n-1)/n$. Under the assumption of the log minimal model program it is also proved that the log canonical threshold of $H\subset X$ is $(n-1)/n$ if and only if $H$ is a cone in ${\mathbb P}^{n-1}$ over a smooth hypersurface of degree $n$ in ${\mathbb P}^{n-2}$.
@article{SM_2002_193_5_a8,
     author = {I. A. Cheltsov and J. Park},
     title = {Total  log canonical thresholds and generalized {Eckardt} points},
     journal = {Sbornik. Mathematics},
     pages = {779--789},
     publisher = {mathdoc},
     volume = {193},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - J. Park
TI  - Total  log canonical thresholds and generalized Eckardt points
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 779
EP  - 789
VL  - 193
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/
LA  - en
ID  - SM_2002_193_5_a8
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A J. Park
%T Total  log canonical thresholds and generalized Eckardt points
%J Sbornik. Mathematics
%D 2002
%P 779-789
%V 193
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/
%G en
%F SM_2002_193_5_a8
I. A. Cheltsov; J. Park. Total  log canonical thresholds and generalized Eckardt points. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 779-789. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/