Total log canonical thresholds and generalized Eckardt points
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 779-789
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a smooth hypersurface of degree $n\geqslant 3$ in ${\mathbb P}^n$.
It is proved that the log canonical threshold of an arbitrary hyperplane section $H$
of it is at least $(n-1)/n$. Under the assumption of the log minimal model program it is also proved that the log canonical threshold of $H\subset X$ is $(n-1)/n$ if and only if $H$ is a cone in ${\mathbb P}^{n-1}$ over a smooth hypersurface of degree $n$ in ${\mathbb P}^{n-2}$.
@article{SM_2002_193_5_a8,
author = {I. A. Cheltsov and J. Park},
title = {Total log canonical thresholds and generalized {Eckardt} points},
journal = {Sbornik. Mathematics},
pages = {779--789},
publisher = {mathdoc},
volume = {193},
number = {5},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/}
}
I. A. Cheltsov; J. Park. Total log canonical thresholds and generalized Eckardt points. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 779-789. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a8/