Just infinite modules over metabelian groups of finite rank
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 761-778
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved, in particular, that if $G$ is a metabelian group of finite rank and $M$ is a faithful
just infinite $\mathbb ZG$-module, then $G$ is finitely generated. This includes studying properties of induced modules over the group algebra $kG$ of a metabelian group $G$ of finite rank over a field $k$ of arbitrary characteristic.
@article{SM_2002_193_5_a7,
author = {A. V. Tushev},
title = {Just infinite modules over metabelian groups of finite rank},
journal = {Sbornik. Mathematics},
pages = {761--778},
publisher = {mathdoc},
volume = {193},
number = {5},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/}
}
A. V. Tushev. Just infinite modules over metabelian groups of finite rank. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 761-778. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/