Just infinite modules over metabelian groups of finite rank
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 761-778

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, in particular, that if $G$ is a metabelian group of finite rank and $M$ is a faithful just infinite $\mathbb ZG$-module, then $G$ is finitely generated. This includes studying properties of induced modules over the group algebra $kG$ of a metabelian group $G$ of finite rank over a field $k$ of arbitrary characteristic.
@article{SM_2002_193_5_a7,
     author = {A. V. Tushev},
     title = {Just infinite modules over metabelian groups of finite rank},
     journal = {Sbornik. Mathematics},
     pages = {761--778},
     publisher = {mathdoc},
     volume = {193},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/}
}
TY  - JOUR
AU  - A. V. Tushev
TI  - Just infinite modules over metabelian groups of finite rank
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 761
EP  - 778
VL  - 193
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/
LA  - en
ID  - SM_2002_193_5_a7
ER  - 
%0 Journal Article
%A A. V. Tushev
%T Just infinite modules over metabelian groups of finite rank
%J Sbornik. Mathematics
%D 2002
%P 761-778
%V 193
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/
%G en
%F SM_2002_193_5_a7
A. V. Tushev. Just infinite modules over metabelian groups of finite rank. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 761-778. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/