Just infinite modules over metabelian groups of finite rank
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 761-778 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved, in particular, that if $G$ is a metabelian group of finite rank and $M$ is a faithful just infinite $\mathbb ZG$-module, then $G$ is finitely generated. This includes studying properties of induced modules over the group algebra $kG$ of a metabelian group $G$ of finite rank over a field $k$ of arbitrary characteristic.
@article{SM_2002_193_5_a7,
     author = {A. V. Tushev},
     title = {Just infinite modules over metabelian groups of finite rank},
     journal = {Sbornik. Mathematics},
     pages = {761--778},
     year = {2002},
     volume = {193},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/}
}
TY  - JOUR
AU  - A. V. Tushev
TI  - Just infinite modules over metabelian groups of finite rank
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 761
EP  - 778
VL  - 193
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/
LA  - en
ID  - SM_2002_193_5_a7
ER  - 
%0 Journal Article
%A A. V. Tushev
%T Just infinite modules over metabelian groups of finite rank
%J Sbornik. Mathematics
%D 2002
%P 761-778
%V 193
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/
%G en
%F SM_2002_193_5_a7
A. V. Tushev. Just infinite modules over metabelian groups of finite rank. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 761-778. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a7/

[1] Groves J. R. J., “Metabelian groups with finitely generated integral homology”, Quart. J. Math. Oxford (2), 33:2 (1982), 405–420 | DOI | MR | Zbl

[2] Robinson D. J. S., Wilson J. S., “Soluble groups with many polycyclic quotients”, Proc. London Math. Soc. (3), 48:2 (1984), 193–229 | DOI | MR | Zbl

[3] Zaitsev D. I., Kurdachenko L. A., Tushev A. V., “Moduli nad nilpotentnymi gruppami konechnogo ranga”, Algebra i logika, 24:6 (1985), 631–666 | MR

[4] Tushev A. V., “Finitno-approksimiruemye razreshimye gruppy bez krucheniya so slabym usloviem minimalnosti dlya normalnykh podgrupp”, XVII Vsesoyuzn. algebraich. konf., Tez. soobsch., Ch. 2, KGU, Kishinev, 1985, 175

[5] Tushev A. V., “Uslovie $ \text{Min}$-$\infty$-$N$ i svyazannye s nim predstavleniya razreshimykh grupp”, Ukr. matem. zhurn., 42:5 (1990), 677–681 | MR | Zbl

[6] Karbe M. I., Kurdacenko L. A., “Just infinite modules over locally soluble groups”, Arch. Math. (Basel), 51 (1988), 401–411 | MR | Zbl

[7] Tushev A. V., “Minimalno beskonechnye moduli nad lokalno politsiklicheskimi gruppami konechnogo ranga”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, Institut matematiki AN Ukrainy, Kiev, 1993, 312–325 | MR

[8] Tushev A. V., “O razreshimykh gruppakh, vse sobstvennye faktorgruppy kotorykh imeyut konechnyi rang”, Ukr. matem. zhurn., 45:9 (1993), 1274–1281 | MR | Zbl

[9] Tushev A. V., “On modules over group rings of soluble groups of finite rank”, London Math. Soc. Lecture Note Ser., 261, 1999, 718–727 | MR | Zbl

[10] Tushev A. V., “O primitivnosti gruppovykh algebr nekotorykh klassov razreshimykh grupp”, Matem. sb., 186:3 (1995), 143–160 | MR | Zbl

[11] Tushev A. V., “Spectra of conjugated ideals in group algebras of abelian groups of finite rank and control theorems”, Glasg. Math. J., 38 (1996), 309–320 | DOI | MR | Zbl

[12] Tushev A. V., “Induced modules over group algebras of metabelian groups of finite rank”, Comm. Algebra, 27:12 (1999), 5921–5938 | DOI | MR | Zbl

[13] Tushev A. V., “O primitivnykh predstavleniyakh razreshimykh grupp konechnogo ranga”, Matem. sb., 191:11 (2000), 117–160 | MR

[14] Charin V. S., “O gruppakh avtomorfizmov nilpotentnykh grupp”, Ukr. matem. zhurn., 4:3 (1954), 295–304

[15] Hall P., “Finiteness conditions for soluble groups”, Proc. London Math. Soc. (3), 4:16 (1954), 419–436 | DOI | MR | Zbl

[16] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[17] Passman D. S., “Algebraic crossed products”, Contemp. Math., 43 (1985), 209–225 | MR | Zbl

[18] Kropheller P. H., Linnell P. A., Moody J. A., “Applications of a new $K$-theoretic theorem to soluble group rings”, Proc. Amer. Math. Soc., 104:3 (1988), 675–684 | DOI | MR

[19] Wilson J. S., “Soluble products of minimax groups, and nearly surjective derivations”, J. Pure Appl. Algebra, 53 (1988), 297–331 | DOI | MR

[20] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[21] McConnell J. C., Robson J. C., Noncommutative Noetherian rings, Wiley, Chichester, 1987 | MR | Zbl

[22] Brookes C. J. B., “Modules over polycyclic groups”, Proc. London Math. Soc. (3), 57 (1988), 88–108 | DOI | MR | Zbl

[23] Brookes C. J. C., Brown K. A., “Primitive group rings and Noetherian rings of quotients”, Trans. Amer. Math. Soc., 288 (1985), 605–623 | DOI | MR | Zbl

[24] Robinson D. J. S., “On the cohomology of soluble groups of finite rank”, J. Pure Appl. Algebra, 6 (1975), 155–164 | DOI | MR | Zbl

[25] Wehrfritz B. A. F., “Groups whose irreducible representations have finite degree”, Math. Proc. Cambridge Philos. Soc., 90 (1981), 411–421 | DOI | MR | Zbl

[26] Wehrfritz B. A. F., “Invariant maximal ideals in certain group algebras”, J. London Math. Soc. (2), 46 (1992), 101–110 | DOI | MR | Zbl

[27] Hall P., “On the finiteness of certain soluble groups”, Proc. London Math. Soc. (3), 9:36 (1959), 595–622 | DOI | MR | Zbl