Maximum and minimum generalized entropy solutions to the Cauchy problem
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 727-743 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of the maximum and minimum generalized entropy solutions of the Cauchy problem for a first-order quasilinear equation is proved in the general case of a flux vector that is merely continuous, when the uniqueness property of a generalized entropy solution does not necessarily hold. Some useful applications are presented. In particular, the uniqueness of the generalized entropy solution is established for input data that are periodic with respect to $n-1$ linearly independent space vectors ($n$ is the number of space variables).
@article{SM_2002_193_5_a5,
     author = {E. Yu. Panov},
     title = {Maximum and minimum generalized entropy solutions to {the~Cauchy} problem},
     journal = {Sbornik. Mathematics},
     pages = {727--743},
     year = {2002},
     volume = {193},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a5/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - Maximum and minimum generalized entropy solutions to the Cauchy problem
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 727
EP  - 743
VL  - 193
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a5/
LA  - en
ID  - SM_2002_193_5_a5
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T Maximum and minimum generalized entropy solutions to the Cauchy problem
%J Sbornik. Mathematics
%D 2002
%P 727-743
%V 193
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a5/
%G en
%F SM_2002_193_5_a5
E. Yu. Panov. Maximum and minimum generalized entropy solutions to the Cauchy problem. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 727-743. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a5/

[1] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | Zbl

[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[3] Bénilan Ph., Équation d'évolution dans un space de Banach quelconque et applications, Thèse de Doctorat d'Etat, Centre d'Orsey. Université de Paris-Sud, 1972

[4] Kruzhkov S. N., Khildebrand F., “Zadacha Koshi dlya kvazilineinykh uravnenii pervogo poryadka v sluchae, kogda oblast zavisimosti ot nachalnykh dannykh beskonechna”, Vestn. MGU. Ser. 1. Matem., mekh., 1974, no. 1, 93–100

[5] Kruzhkov S. N., Andreyanov P. A., “K nelokalnoi teorii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka v klasse lokalno-summiruemykh funktsii”, Dokl. AN SSSR, 220:1 (1975), 23–26 | MR | Zbl

[6] Andreianov B. P., Bénilan Ph., Kruzhkov S. N., “$L^1$-theory of scalar conservation law with continuous flux function”, J. Funct. Anal., 171:1 (2000), 15–33 | DOI | MR | Zbl

[7] Panov E. Yu., Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1991

[8] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl

[9] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | MR | Zbl

[10] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994) (1996), 31–54 | MR | Zbl

[11] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl

[12] Bénilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, Nonlinear Differential Equations Appl., 3 (1996), 395–419 | DOI | MR | Zbl

[13] Barthélemy L., “Problème d'obstacle pour une équation quasilinéair du premier ordre”, Ann. Fac. Sci. Toulouse Math. (5), 9:2 (1988), 137–159 | MR

[14] Barthélemy L., Bénilan Ph., “Subsolution for abstract evolution equations”, Potential Anal., 1 (1992), 93–113 | DOI | MR | Zbl

[15] Crandall M. G., “The semigroup approach to first order quasilinear equations in several space variables”, Israel J. Math., 12 (1972), 108–122 | DOI | MR

[16] Panov E. Yu., “K teorii obobschennykh entropiinykh sub- i super-reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Differents. uravneniya, 37:2 (2001), 249–257 | MR

[17] Panov E. Yu., “O zadache Koshi dlya kvazilineinogo uravneniya pervogo poryadka na mnogoobrazii”, Differents. uravneniya, 33:2 (1997), 257–266 | MR | Zbl

[18] Panov E. Yu., On maximal and minimal generalized entropy solutions to Cauchy problem for a first-order quasilinear equation, Preprint No2000/26, Laboratoire de mathématiques de Besançon, 2000