@article{SM_2002_193_5_a5,
author = {E. Yu. Panov},
title = {Maximum and minimum generalized entropy solutions to {the~Cauchy} problem},
journal = {Sbornik. Mathematics},
pages = {727--743},
year = {2002},
volume = {193},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a5/}
}
E. Yu. Panov. Maximum and minimum generalized entropy solutions to the Cauchy problem. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 727-743. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a5/
[1] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | Zbl
[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl
[3] Bénilan Ph., Équation d'évolution dans un space de Banach quelconque et applications, Thèse de Doctorat d'Etat, Centre d'Orsey. Université de Paris-Sud, 1972
[4] Kruzhkov S. N., Khildebrand F., “Zadacha Koshi dlya kvazilineinykh uravnenii pervogo poryadka v sluchae, kogda oblast zavisimosti ot nachalnykh dannykh beskonechna”, Vestn. MGU. Ser. 1. Matem., mekh., 1974, no. 1, 93–100
[5] Kruzhkov S. N., Andreyanov P. A., “K nelokalnoi teorii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka v klasse lokalno-summiruemykh funktsii”, Dokl. AN SSSR, 220:1 (1975), 23–26 | MR | Zbl
[6] Andreianov B. P., Bénilan Ph., Kruzhkov S. N., “$L^1$-theory of scalar conservation law with continuous flux function”, J. Funct. Anal., 171:1 (2000), 15–33 | DOI | MR | Zbl
[7] Panov E. Yu., Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1991
[8] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl
[9] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | MR | Zbl
[10] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994) (1996), 31–54 | MR | Zbl
[11] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl
[12] Bénilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, Nonlinear Differential Equations Appl., 3 (1996), 395–419 | DOI | MR | Zbl
[13] Barthélemy L., “Problème d'obstacle pour une équation quasilinéair du premier ordre”, Ann. Fac. Sci. Toulouse Math. (5), 9:2 (1988), 137–159 | MR
[14] Barthélemy L., Bénilan Ph., “Subsolution for abstract evolution equations”, Potential Anal., 1 (1992), 93–113 | DOI | MR | Zbl
[15] Crandall M. G., “The semigroup approach to first order quasilinear equations in several space variables”, Israel J. Math., 12 (1972), 108–122 | DOI | MR
[16] Panov E. Yu., “K teorii obobschennykh entropiinykh sub- i super-reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Differents. uravneniya, 37:2 (2001), 249–257 | MR
[17] Panov E. Yu., “O zadache Koshi dlya kvazilineinogo uravneniya pervogo poryadka na mnogoobrazii”, Differents. uravneniya, 33:2 (1997), 257–266 | MR | Zbl
[18] Panov E. Yu., On maximal and minimal generalized entropy solutions to Cauchy problem for a first-order quasilinear equation, Preprint No2000/26, Laboratoire de mathématiques de Besançon, 2000