A condition for the~compactness of operators in a~certain class and its application
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 649-668

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of “integral” operators arising in the analysis of non-local problems in which the values of a solution at the boundary of the domain under consideration are expressed through its values at interior points is investigated. These operators are defined in terms of measures close to Carleson measures. A condition ensuring the complete continuity of such operators is found. This result enables one to complement and extend results on the Fredholm property of a broad class of non-local problems for a second-order elliptic equation.
@article{SM_2002_193_5_a1,
     author = {A. K. Gushchin},
     title = {A condition for the~compactness of operators in a~certain class and its application},
     journal = {Sbornik. Mathematics},
     pages = {649--668},
     publisher = {mathdoc},
     volume = {193},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - A condition for the~compactness of operators in a~certain class and its application
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 649
EP  - 668
VL  - 193
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/
LA  - en
ID  - SM_2002_193_5_a1
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T A condition for the~compactness of operators in a~certain class and its application
%J Sbornik. Mathematics
%D 2002
%P 649-668
%V 193
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/
%G en
%F SM_2002_193_5_a1
A. K. Gushchin. A condition for the~compactness of operators in a~certain class and its application. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 649-668. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/