A condition for the compactness of operators in a certain class and its application
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 649-668 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of “integral” operators arising in the analysis of non-local problems in which the values of a solution at the boundary of the domain under consideration are expressed through its values at interior points is investigated. These operators are defined in terms of measures close to Carleson measures. A condition ensuring the complete continuity of such operators is found. This result enables one to complement and extend results on the Fredholm property of a broad class of non-local problems for a second-order elliptic equation.
@article{SM_2002_193_5_a1,
     author = {A. K. Gushchin},
     title = {A condition for the~compactness of operators in a~certain class and its application},
     journal = {Sbornik. Mathematics},
     pages = {649--668},
     year = {2002},
     volume = {193},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - A condition for the compactness of operators in a certain class and its application
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 649
EP  - 668
VL  - 193
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/
LA  - en
ID  - SM_2002_193_5_a1
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T A condition for the compactness of operators in a certain class and its application
%J Sbornik. Mathematics
%D 2002
%P 649-668
%V 193
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/
%G en
%F SM_2002_193_5_a1
A. K. Gushchin. A condition for the compactness of operators in a certain class and its application. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 649-668. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a1/

[1] Guschin A. K., Mikhailov V. P., “O razreshimosti nelokalnykh zadach dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 185:1 (1994), 121–160 | MR | Zbl

[2] Guschin A. K., Mikhailov V. P., “O nepreryvnosti reshenii odnogo klassa nelokalnykh zadach dlya ellipticheskogo uravneniya”, Matem. sb., 186:2 (1995), 37–58 | MR | Zbl

[3] Guschin A. K., Mikhailov V. P., “Ob odnoznachnoi razreshimosti nelokalnykh zadach dlya ellipticheskogo uravneniya”, Dokl. RAN, 351:1 (1996), 7–8 | MR | Zbl

[4] Guschin A. K., “Nekotorye svoistva reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 189:7 (1998), 53–90 | MR | Zbl

[5] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | MR | Zbl

[6] Guschin A. K., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 137 (179):1 (1988), 19–64 | MR

[7] Mikhailov V. P., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:10 (1976), 1877–1891 | MR

[8] Guschin A. K., Mikhailov V. P., “O suschestvovanii granichnykh znachenii reshenii ellipticheskikh uravnenii”, Matem. sb., 182:6 (1991), 787–810 | Zbl

[9] Garnett J. B., Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York, 1981 | MR | Zbl

[10] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[11] Hörmander L., “$L^p$-estimates for (pluri-)subharmonic functions”, Math. Scand., 20 (1967), 65–78 | MR | Zbl

[12] Paneyakh B. P., “O nekotorykh nelokalnykh kraevykh zadachakh dlya lineinykh differentsialnykh operatorov”, Matem. zametki, 35:3 (1984), 425–434 | MR | Zbl

[13] Galakhov E. I., Skubachevskii A. L., “O szhimayuschikh neotritsatelnykh polugruppakh s nelokalnymi usloviyami”, Matem. sb., 189:1 (1998), 45–78 | MR | Zbl

[14] Guschin A. K., “Uslovie polnoi nepreryvnosti operatorov, voznikayuschikh v nelokalnykh zadachakh dlya ellipticheskikh uravnenii”, Dokl. RAN, 373:2 (2000), 161–163 | MR | Zbl

[15] DeGiorgi E., “Sulla differenziabilita e l'analiticita delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (5), 3 (1957), 25–43 | MR

[16] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[18] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl