Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 635-648 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Orientable 6-dimensional submanifolds (of general type) of the Cayley algebra are investigated on which the 3-fold vector cross products in the octave algebra induce a Hermitian structure. It is shown that such submanifolds of the Cayley algebra are minimal, non-compact, and para-Kähler, their holomorphic bisectional curvature is positive and vanishes only at the geodesic points. It is also proved that cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of the octave algebra are ruled. A simple test for the minimality of such surfaces is obtained. It is shown that 6-dimensional submanifolds of the Cayley algebra satisfying the axiom of $g$-cosymplectic hypersurfaces are Kähler manifolds.
@article{SM_2002_193_5_a0,
     author = {M. B. Banaru},
     title = {Hermitian geometry of 6-dimensional submanifolds of {the~Cayley} algebra},
     journal = {Sbornik. Mathematics},
     pages = {635--648},
     year = {2002},
     volume = {193},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 635
EP  - 648
VL  - 193
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/
LA  - en
ID  - SM_2002_193_5_a0
ER  - 
%0 Journal Article
%A M. B. Banaru
%T Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra
%J Sbornik. Mathematics
%D 2002
%P 635-648
%V 193
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/
%G en
%F SM_2002_193_5_a0
M. B. Banaru. Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 635-648. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/

[1] Eckmann B., “Stetige Lösungen linearer Gleichungsysteme”, Comment. Math. Helv., 15 (1942–1943), 318–339 | DOI | MR

[2] Whitehead G., “Note on cross-sections in Stiefel manifolds”, Comment. Math. Helv., 37 (1963), 239–240 | MR | Zbl

[3] Brown R. B., Gray A., “Vector cross products”, Comment. Math. Helv., 42 (1967), 222–236 | DOI | MR | Zbl

[4] Gray A., “Vector cross products on manifolds”, Trans. Amer. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl

[5] Calabi E., “Construction and properties of some 6-dimensional almost complex manifolds”, Trans. Amer. Math. Soc., 87 (1958), 407–438 | DOI | MR | Zbl

[6] Gray A., “Some examples of almost Hermitian manifolds”, Illinois J. Math., 10:2 (1966), 353–366 | MR | Zbl

[7] Gray A., “Six dimensional almost complex manifolds defined by means of three-fold vector cross products”, Tôhoku Math. J. (2), 21 (1969), 614–620 | DOI | MR | Zbl

[8] Yano K., Sumitomo T., “Differential geometry of hypersurfaces in a Caylay space”, Proc. Roy. Soc. Edinburgh Sect. A, 66 (1963–1964), 216–231 | MR

[9] Kirichenko V. F., “Klassifikatsiya kelerovykh struktur, indutsirovannykh 3-vektornymi proizvedeniyami na 6-mernykh podmnogoobraziyakh algebry Keli”, Izv. vuzov. Ser. matem., 1980, no. 8, 32–38 | MR | Zbl

[10] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye 3-vektornymi proizvedeniyami na 6-mernykh podmnogoobraziyakh algebry Keli”, Vestn. MGU. Ser. 1. Matem., mekh., 1973, no. 3, 70–75 | Zbl

[11] Kirichenko V. F., “Ustoichivost pochti ermitovykh struktur, indutsirovannykh 3-vektornymi proizvedeniyami na 6-mernykh podmnogoobraziyakh algebry Keli”, Ukr. geom. sb., 25 (1982), 60–68

[12] Cho J. T., Sekigawa K., “Six-dimensional quasi-Kähler manifolds of constant sectional curvature”, Tsukuba J. Math., 22:3 (1998), 611–627 | MR | Zbl

[13] Deszcz R., Dillen F., Verstraelen L., Vrancken L., “Quasi-Einstein totally real submanifolds of the nearly Kähler 6-sphere”, Tôhoku Math. J. (2), 51:4 (1999), 461–478 | DOI | MR | Zbl

[14] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, IL, M., 1960

[15] Kartan E., Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960

[16] Banaru M. B., “Klassy Greya–Khervelly pochti ermitovykh struktur na 6-mernykh podmnogoobraziyakh algebry Keli”, Nauchnye trudy MPGU im. V. I. Lenina, Prometei, M., 1994, 36–38

[17] Banaru M. B., “O spektrakh vazhneishikh tenzorov 6-mernykh ermitovykh podmnogoobrazii algebry Keli”, Noveishie problemy teorii polya, Izd-vo KGU, Kazan, 2000, 18–22 | MR

[18] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[19] Gray A., “Minimal varieties and almost Hermitian submanifolds”, Michigan Math. J., 12 (1966), 273–287 | MR

[20] Gray A., “Curvature identities for Hermitian and almost Hermitian manifolds”, Tôhoku Math. J. (2), 28:4 (1976), 601–612 | DOI | MR | Zbl

[21] Rizza G. B., “Varietá parakähleriane”, Ann. Mat. Pura Appl. (4), 98:4 (1974), 47–61 | MR | Zbl

[22] Sawaki S., Sekigawa K., “Almost Hermitian manifolds with constant holomorphic sectional curvature”, J. Differential Geom., 9 (1974), 123–134 | MR | Zbl

[23] Vanhecke L., “Almost Hermitian manifolds with $J$-invariant Riemann curvature tensor”, Rend. Sem. Mat. Univ. Politec. Torino, 34 (1975–1977), 487–498 | MR

[24] Goldberg S., Kobayashi S., “Holomorphic bisectional curvature”, J. Differential Geom., 1 (1967), 229–233 | MR

[25] Banaru M. B., “O pochti ermitovykh strukturakh, indutsirovannykh 3-vektornymi proizvedeniyami na 6-mernykh orientiruemykh mnogoobraziyakh algebry oktav”, Polianaliticheskie funktsii, Izd-vo SGPU, Smolensk, 1997, 113–117

[26] Banaru M. B., “Ob uploschayuschikhsya 6-mernykh ermitovykh podmnogoobraziyakh algebry Keli”, Izbrannye voprosy matematiki i metodiki ee prepodavaniya, Izd-vo SGPU, Smolensk, 1998, 31–32

[27] Goldberg S., “Totally geodesic hypersurfaces of Kähler manifolds”, Pacific J. Math., 27:2 (1968), 275–281 | MR | Zbl

[28] Tashiro Y., “On contact structure of hypersurfaces in complex manifolds, I”, Tôhoku Math. J. (2), 15:1 (1963), 62–78 | DOI | MR | Zbl

[29] Blair D., “The theory of quasi-Sasakian structures”, J. Differential Geom., 1 (1967), 331–345 | MR | Zbl

[30] Stepanova L. V., “Kvazisasakieva struktura na giperpoverkhnostyakh ermitovyx mnogoobrazii”, Nauchnye trudy MPGU im. V. I. Lenina, Prometei, M., 1995, 187–191

[31] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR

[32] Banaru M. B., Ermitova geometriya 6-mernykh podmnogoobrazii algebry Keli, Diss. $\dots$ kand. fiz.-matem. nauk, MPGU im. V. I. Lenina, M., 1993