Hermitian geometry of 6-dimensional submanifolds of the~Cayley algebra
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 635-648

Voir la notice de l'article provenant de la source Math-Net.Ru

Orientable 6-dimensional submanifolds (of general type) of the Cayley algebra are investigated on which the 3-fold vector cross products in the octave algebra induce a Hermitian structure. It is shown that such submanifolds of the Cayley algebra are minimal, non-compact, and para-Kähler, their holomorphic bisectional curvature is positive and vanishes only at the geodesic points. It is also proved that cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of the octave algebra are ruled. A simple test for the minimality of such surfaces is obtained. It is shown that 6-dimensional submanifolds of the Cayley algebra satisfying the axiom of $g$-cosymplectic hypersurfaces are Kähler manifolds.
@article{SM_2002_193_5_a0,
     author = {M. B. Banaru},
     title = {Hermitian geometry of 6-dimensional submanifolds of {the~Cayley} algebra},
     journal = {Sbornik. Mathematics},
     pages = {635--648},
     publisher = {mathdoc},
     volume = {193},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - Hermitian geometry of 6-dimensional submanifolds of the~Cayley algebra
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 635
EP  - 648
VL  - 193
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/
LA  - en
ID  - SM_2002_193_5_a0
ER  - 
%0 Journal Article
%A M. B. Banaru
%T Hermitian geometry of 6-dimensional submanifolds of the~Cayley algebra
%J Sbornik. Mathematics
%D 2002
%P 635-648
%V 193
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/
%G en
%F SM_2002_193_5_a0
M. B. Banaru. Hermitian geometry of 6-dimensional submanifolds of the~Cayley algebra. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 635-648. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a0/