@article{SM_2002_193_4_a6,
author = {N. N. Kholshchevnikova},
title = {Union of sets of uniqueness for multiple {Walsh} and multiple trigonometric series},
journal = {Sbornik. Mathematics},
pages = {609--633},
year = {2002},
volume = {193},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a6/}
}
N. N. Kholshchevnikova. Union of sets of uniqueness for multiple Walsh and multiple trigonometric series. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 609-633. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a6/
[1] Skvortsov V. A., “O koeffitsientakh skhodyaschikhsya kratnykh ryadov Khaara i Uolsha”, Vestn. MGU. Ser. 1. Matem., mekh., 1973, no. 6, 77–79 | Zbl
[2] Movsisyan Kh. O., “O edinstvennosti dvoinykh ryadov po sistemam Khaara i Uolsha”, Izv. AN Arm. SSR. Matem., 9:1 (1974), 40–61 | MR
[3] Lukomskii S. F., “O nekotorykh klassakh mnozhestv edinstvennosti kratnykh ryadov Uolsha”, Matem. sb., 180:7 (1989), 937–945 | MR
[4] Ash J. M., Welland G. V., “Convergence, uniqueness and summability of multiple trigonometric series”, Trans. Amer. Math. Soc., 163:1 (1972), 401–436 | DOI | MR | Zbl
[5] Tetunashvili Sh. T., “O nekotorykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 | MR
[6] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl
[7] Privalov I. I., “Obobschenie teoremy P. Du Bois-Reymond'a”, Matem. sb., 31:2 (1923), 229–231
[8] Skvortsov V. A., “Nekotorye obobscheniya teoremy edinstvennosti dlya ryadov po sisteme Uolsha”, Matem. zametki, 13:3 (1973), 367–372 | MR | Zbl
[9] Kholschevnikova N. N., “Teoremy ob ob'edinenii $U$-mnozhestv”, Matem. zametki, 67:5 (2000), 778–787 | MR
[10] Skvortsov V. A., Talalyan A. A., “Nekotorye voprosy edinstvennosti kratnykh ryadov po sisteme Khaara i trigonometricheskoi sisteme”, Matem. zametki, 46:2 (1989), 104–113 | MR
[11] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR
[12] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[13] Kahane S., “Antistable classes of thin sets in harmonic analysis”, Illinois J. Math., 37 (1993), 186–223 | MR | Zbl
[14] Konyagin S. V., “Every set of resolution is an Arbault set”, C. R. Acad. Sci. Paris. Sér. I Math., 314 (1992), 101–104 | MR | Zbl
[15] Kholschevnikova N. N., “O teoreme Kantora–Lebega dlya kratnykh trigonometricheskikh ryadov”, Fundament. fiziko-matem. problemy, Sb. nauchnykh trudov, no. 3, 2000, 35–40