Union of sets of uniqueness for multiple Walsh and multiple trigonometric series
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 609-633

Voir la notice de l'article provenant de la source Math-Net.Ru

For the case of convergence over rectangles of multiple Walsh and multiple trigonometric series questions on unions of sets of uniqueness, formal multiplication of series, the localization principle for integrable functions, and analogues of Privalov's theorem on the unique representation of a function by a series are considered.
@article{SM_2002_193_4_a6,
     author = {N. N. Kholshchevnikova},
     title = {Union of sets of uniqueness for multiple {Walsh} and  multiple trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {609--633},
     publisher = {mathdoc},
     volume = {193},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a6/}
}
TY  - JOUR
AU  - N. N. Kholshchevnikova
TI  - Union of sets of uniqueness for multiple Walsh and  multiple trigonometric series
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 609
EP  - 633
VL  - 193
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_4_a6/
LA  - en
ID  - SM_2002_193_4_a6
ER  - 
%0 Journal Article
%A N. N. Kholshchevnikova
%T Union of sets of uniqueness for multiple Walsh and  multiple trigonometric series
%J Sbornik. Mathematics
%D 2002
%P 609-633
%V 193
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_4_a6/
%G en
%F SM_2002_193_4_a6
N. N. Kholshchevnikova. Union of sets of uniqueness for multiple Walsh and  multiple trigonometric series. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 609-633. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a6/