On central ideals of finitely generated binary $(-1,1)$-algebras
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 585-607 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1975 the author proved that the centre of a free finitely generated $(-1,1)$-algebra contains a non-zero ideal of the whole algebra. Filippov proved that in a free alternative algebra of rank $\geqslant 4$ there exists a trivial ideal contained in the associative centre. Il'tyakov established that the associative nucleus of a free alternative algebra of rank 3 coincides with the ideal of identities of the Cayley–Dickson algebra. In the present paper the above-mentioned theorem of the author is extended to free finitely generated binary $(-1,1)$-algebras. Theorem. \textit{The centre of a free finitely generated binary $(-1,1)$-algebra of rank $\geqslant 3$ over a field of characteristic distinct from {\textrm2} and {\rm3} contains a non-zero ideal of the whole algebra.} As a by-product, we shall prove that the $T$-ideal generated by the function $(z,x,(x,x,y))$ in a free binary $(-1,1)$-algebra of finite rank is soluble. We deduce from this that the basis rank of the variety of binary $(-1,1)$-algebras is infinite.
@article{SM_2002_193_4_a5,
     author = {S. V. Pchelintsev},
     title = {On central ideals of finitely generated binary $(-1,1)$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {585--607},
     year = {2002},
     volume = {193},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - On central ideals of finitely generated binary $(-1,1)$-algebras
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 585
EP  - 607
VL  - 193
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/
LA  - en
ID  - SM_2002_193_4_a5
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T On central ideals of finitely generated binary $(-1,1)$-algebras
%J Sbornik. Mathematics
%D 2002
%P 585-607
%V 193
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/
%G en
%F SM_2002_193_4_a5
S. V. Pchelintsev. On central ideals of finitely generated binary $(-1,1)$-algebras. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 585-607. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/

[1] Pchelintsev S. V., “Nilpotentnost assotsiatornogo ideala svobodnogo konechno porozhdennogo $(-1,1)$-koltsa”, Algebra i logika, 14:5 (1975), 543–571 | MR | Zbl

[2] Filippov V. T., “Trivialnye yadernye idealy svobodnoi alternativnoi algebry”, Algebra i logika, 24:6 (1985), 696–717 | MR | Zbl

[3] Iltyakov A. V., “Svobodnye alternativnye algebry ranga 3”, Algebra i logika, 23:2 (1984), 136–158 | MR | Zbl

[4] Kleinfeld E., Smith H. F., “Locally $(-1,1)$-rings”, Comm. Algebra, 3 (1975), 219–237 | DOI | MR | Zbl

[5] Smith H. F., “Finite-dimensional locally $(-1,1)$-algebras”, Comm. Algebra, 7 (1979), 177–191 | DOI | MR | Zbl

[6] Pchelintsev S. V., “O lokalno nilpotentnom radikale v nekotorykh klassakh pravoalternativnykh kolets”, Sib. matem. zhurn., 17:2 (1976), 340–360 | MR | Zbl

[7] Pchelintsev S. V., “Binarno $(-1,1)$-nil-algebry”, Matem. zametki, 48:1 (1990), 103–109 | MR

[8] Hentzel I. R., Smith H. F., “Semiprime locally $(-1,1)$ rings with minimal condition”, Algebras Groups Geom., 2 (1985), 26–52 | MR | Zbl

[9] Hentzel I. R., Smith H. F., “Simple locally $(-1,1)$ nil rings”, J. Algebra, 101 (1986), 262–272 | DOI | MR | Zbl

[10] Hentzel I. R., “Nil-semisimple locally $(-1,1)$-rings”, Bull. Iranian Math. Soc., 9 (1981), 11–14 | MR

[11] Skosyrskii V. G., “Pravoalternativnye algebry”, Algebra i logika, 23:2 (1984), 185–192 | MR | Zbl

[12] Pchelintsev S. V., “O tsentralnykh idealakh binarno $(-1,1)$-algebr konechnogo ranga”, Mezhdunarodnyi algebraicheskii seminar, Tezisy dokladov, MGU, mekh-mat, M., 2000, 47–48

[13] Pchelintsev S. V., “Opredelyayuschie tozhdestva odnogo mnogoobraziya pravoalternativnykh algebr”, Matem. zametki, 20:2 (1976), 161–176 | MR | Zbl

[14] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[15] Kleinfeld E., “Right alternative rings”, Proc. Amer. Math. Soc., 4 (1953), 939–944 | DOI | MR | Zbl

[16] Thedy A., “Right alternative rings”, J. Algebra, 37 (1975), 1–43 | DOI | MR | Zbl

[17] Pchelintsev S. V., “Pervichnye algebry i absolyutnye deliteli nulya”, Izv. AN SSSR. Ser. matem., 50:1 (1986), 79–100 | MR | Zbl

[18] Roomeldi R. E., “Tsentry svobodnogo $(-1,1)$-koltsa”, Sib. matem. zhurn., 18:4 (1977), 861–867 | MR

[19] Shestakov I. P., “Alternativnye algebry s tozhdestvom $[x,y]^m=0$”, Algebra i logika, 20:5 (1981), 575–596 | MR | Zbl

[20] Hentzel I. R., “The caracterization of $(-1,1)$-rings”, J. Algebra, 30:1–3 (1974), 236–258 | DOI | MR | Zbl

[21] Pchelintsev S. V., “Teorema o vysote dlya alternativnykh algebr”, Matem. sb., 124:4 (1984), 557–567 | MR | Zbl

[22] Hentzel I. R., Kleinfeld E., Smith H. F., “Commutative center = center in a prime finitely generated right alternative ring”, Comm. Algebra, 25:10 (1997), 3147–3153 | DOI | MR | Zbl