On central ideals of finitely generated binary $(-1,1)$-algebras
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 585-607

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1975 the author proved that the centre of a free finitely generated $(-1,1)$-algebra contains a non-zero ideal of the whole algebra. Filippov proved that in a free alternative algebra of rank $\geqslant 4$ there exists a trivial ideal contained in the associative centre. Il'tyakov established that the associative nucleus of a free alternative algebra of rank 3 coincides with the ideal of identities of the Cayley–Dickson algebra. In the present paper the above-mentioned theorem of the author is extended to free finitely generated binary $(-1,1)$-algebras. Theorem. \textit{The centre of a free finitely generated binary $(-1,1)$-algebra of rank $\geqslant 3$ over a field of characteristic distinct from {\textrm2} and {\rm3} contains a non-zero ideal of the whole algebra.} As a by-product, we shall prove that the $T$-ideal generated by the function $(z,x,(x,x,y))$ in a free binary $(-1,1)$-algebra of finite rank is soluble. We deduce from this that the basis rank of the variety of binary $(-1,1)$-algebras is infinite.
@article{SM_2002_193_4_a5,
     author = {S. V. Pchelintsev},
     title = {On central ideals of finitely generated binary $(-1,1)$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {585--607},
     publisher = {mathdoc},
     volume = {193},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - On central ideals of finitely generated binary $(-1,1)$-algebras
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 585
EP  - 607
VL  - 193
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/
LA  - en
ID  - SM_2002_193_4_a5
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T On central ideals of finitely generated binary $(-1,1)$-algebras
%J Sbornik. Mathematics
%D 2002
%P 585-607
%V 193
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/
%G en
%F SM_2002_193_4_a5
S. V. Pchelintsev. On central ideals of finitely generated binary $(-1,1)$-algebras. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 585-607. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a5/