Conditions for the non-negativity of integral quadratic forms with constant
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 531-557 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integral quadratic functional with constant coefficients on a half-axis is considered. A necessary and sufficient condition for its non-negativity at all square integrable pairs of functions related by a linear ODE is proposed, which is based on the Hamilton–Jacobi inequality. A connection between this condition and the well-known frequency criterion is established.
@article{SM_2002_193_4_a3,
     author = {A. A. Milyutin},
     title = {Conditions for the~non-negativity of integral quadratic forms with constant},
     journal = {Sbornik. Mathematics},
     pages = {531--557},
     year = {2002},
     volume = {193},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a3/}
}
TY  - JOUR
AU  - A. A. Milyutin
TI  - Conditions for the non-negativity of integral quadratic forms with constant
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 531
EP  - 557
VL  - 193
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_4_a3/
LA  - en
ID  - SM_2002_193_4_a3
ER  - 
%0 Journal Article
%A A. A. Milyutin
%T Conditions for the non-negativity of integral quadratic forms with constant
%J Sbornik. Mathematics
%D 2002
%P 531-557
%V 193
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2002_193_4_a3/
%G en
%F SM_2002_193_4_a3
A. A. Milyutin. Conditions for the non-negativity of integral quadratic forms with constant. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 531-557. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a3/

[1] Barabanov N. E., Gelig A. Kh., Leonov G. A., Likhtarnikov A. L., Matveev A. S., Smirnova V. B., Fradkov A. L., “Chastotnaya teorema (lemma Yakubovicha–Kalmana) v teorii upravleniya”, Avtomatika i telemekhanika, 1996, no. 10, 3–40 | MR | Zbl

[2] Dmitruk A. V., “Kriterii neotritsatelnosti vyrozhdennoi kvadratichnoi formy s dvumernym upravleniem”, Itogi nauki i tekhn. Sovrem. matem. i ee prilozh. (to appear)

[3] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl