A modified strong dyadic integral and derivative
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 507-529

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function $f\in L(\mathbb R_+)$ its modified strong dyadic integral $J(f)$ and the modified strong dyadic derivative $D(f)$ are defined. A criterion for the existence of a modified strong dyadic integral for an integrable function is proved, and the equalities $J(D(f))=f$ and $D(J(f))=f$ are established under the assumption that $\displaystyle\int_{\mathbb R_+}f(x)\,dx=0$. A countable system of eigenfunctions of the operators $D$ and $J$ is found. The linear span $L$ of this set is shown to be dense in the dyadic Hardy space $H(\mathbb R_+)$, and the linear operator $\widetilde J\colon L\to L(\mathbb R_+)$, $\widetilde J(f)=J(f)^\sim$, is proved to be bounded. Hence this operator can be uniquely continuously extended to $H(\mathbb R_+)$ and the resulting linear operator $\widetilde J\colon H(\mathbb R_+)\to L(\mathbb R_+)$ is bounded.
@article{SM_2002_193_4_a2,
     author = {B. I. Golubov},
     title = {A modified strong dyadic integral and derivative},
     journal = {Sbornik. Mathematics},
     pages = {507--529},
     publisher = {mathdoc},
     volume = {193},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - A modified strong dyadic integral and derivative
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 507
EP  - 529
VL  - 193
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/
LA  - en
ID  - SM_2002_193_4_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T A modified strong dyadic integral and derivative
%J Sbornik. Mathematics
%D 2002
%P 507-529
%V 193
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/
%G en
%F SM_2002_193_4_a2
B. I. Golubov. A modified strong dyadic integral and derivative. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 507-529. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/