A modified strong dyadic integral and derivative
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 507-529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a function $f\in L(\mathbb R_+)$ its modified strong dyadic integral $J(f)$ and the modified strong dyadic derivative $D(f)$ are defined. A criterion for the existence of a modified strong dyadic integral for an integrable function is proved, and the equalities $J(D(f))=f$ and $D(J(f))=f$ are established under the assumption that $\displaystyle\int_{\mathbb R_+}f(x)\,dx=0$. A countable system of eigenfunctions of the operators $D$ and $J$ is found. The linear span $L$ of this set is shown to be dense in the dyadic Hardy space $H(\mathbb R_+)$, and the linear operator $\widetilde J\colon L\to L(\mathbb R_+)$, $\widetilde J(f)=J(f)^\sim$, is proved to be bounded. Hence this operator can be uniquely continuously extended to $H(\mathbb R_+)$ and the resulting linear operator $\widetilde J\colon H(\mathbb R_+)\to L(\mathbb R_+)$ is bounded.
@article{SM_2002_193_4_a2,
     author = {B. I. Golubov},
     title = {A modified strong dyadic integral and derivative},
     journal = {Sbornik. Mathematics},
     pages = {507--529},
     year = {2002},
     volume = {193},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - A modified strong dyadic integral and derivative
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 507
EP  - 529
VL  - 193
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/
LA  - en
ID  - SM_2002_193_4_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T A modified strong dyadic integral and derivative
%J Sbornik. Mathematics
%D 2002
%P 507-529
%V 193
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/
%G en
%F SM_2002_193_4_a2
B. I. Golubov. A modified strong dyadic integral and derivative. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 507-529. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/

[1] Butzer P. L., Wagner H. J., “Walsh series and the concept of a derivative”, Appl. Anal., 3:1 (1973), 29–46 | DOI | MR | Zbl

[2] Butzer P. L., Wagner H. J., “A calculus for Walsh functions defined on $\mathbb R_+$”, Proc. Sympos. Naval Res. Laboratory (Washington, DC, April 18–20), 1973, 75–81 | Zbl

[3] Pal J., “On the connection between the concept of a derivative defined on the dyadic field and the Walsh–Fourier transform”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 18 (1975), 49–54 | MR

[4] Pal J., “On a concept of a derivative among functions defined on the dyadic field”, SIAM J. Math. Anal., 8:3 (1977), 375–391 | DOI | MR | Zbl

[5] Schipp F., Wade W. R., Simon P., Walsh series. An introduction to dyadic harmonic analysis, Akademiai Kiado, Budapest, 1990 | MR

[6] Onneweer C. W., “Differentiation on $p$-adic or $p$-series field”, Linear spaces and approx, Internat. Ser. Numer. Math., 40, Birkhäuser, Basel, 1978, 187–198 | MR

[7] Onneweer C. W., “On the definition of dyadic differentiation”, Appl. Anal., 9 (1979), 267–278 | DOI | MR | Zbl

[8] Fine N. J., “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl

[9] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[10] Golubov B. I., “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | MR | Zbl

[11] Golubov B. I., “Ob ogranichennosti dvoichnykh operatorov Khardi i Khardi–Littlvuda v dvoichnykh prostranstvakh $H$ i BMO”, Anal. Math., 26 (2000), 287–298 | DOI | MR | Zbl

[12] Ladhawala N. R., “Absolute summability of Walsh–Fourier series”, Pacific J. Math., 65 (1976), 103–108 | MR | Zbl