A modified strong dyadic integral and derivative
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 507-529
Voir la notice de l'article provenant de la source Math-Net.Ru
For a function $f\in L(\mathbb R_+)$ its modified strong dyadic integral $J(f)$
and the modified strong dyadic derivative $D(f)$ are defined.
A criterion for the existence of a modified strong dyadic integral for an integrable function is proved, and the equalities $J(D(f))=f$ and $D(J(f))=f$ are established under
the assumption that $\displaystyle\int_{\mathbb R_+}f(x)\,dx=0$.
A countable system of eigenfunctions of the operators $D$ and $J$ is found. The linear span
$L$ of this set is shown to be dense in the dyadic Hardy space $H(\mathbb R_+)$,
and the linear operator $\widetilde J\colon L\to L(\mathbb R_+)$, $\widetilde J(f)=J(f)^\sim$, is proved to be bounded. Hence this operator can be uniquely continuously extended to $H(\mathbb R_+)$ and the resulting linear operator
$\widetilde J\colon H(\mathbb R_+)\to L(\mathbb R_+)$ is bounded.
@article{SM_2002_193_4_a2,
author = {B. I. Golubov},
title = {A modified strong dyadic integral and derivative},
journal = {Sbornik. Mathematics},
pages = {507--529},
publisher = {mathdoc},
volume = {193},
number = {4},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/}
}
B. I. Golubov. A modified strong dyadic integral and derivative. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 507-529. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/