@article{SM_2002_193_4_a2,
author = {B. I. Golubov},
title = {A modified strong dyadic integral and derivative},
journal = {Sbornik. Mathematics},
pages = {507--529},
year = {2002},
volume = {193},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/}
}
B. I. Golubov. A modified strong dyadic integral and derivative. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 507-529. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a2/
[1] Butzer P. L., Wagner H. J., “Walsh series and the concept of a derivative”, Appl. Anal., 3:1 (1973), 29–46 | DOI | MR | Zbl
[2] Butzer P. L., Wagner H. J., “A calculus for Walsh functions defined on $\mathbb R_+$”, Proc. Sympos. Naval Res. Laboratory (Washington, DC, April 18–20), 1973, 75–81 | Zbl
[3] Pal J., “On the connection between the concept of a derivative defined on the dyadic field and the Walsh–Fourier transform”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 18 (1975), 49–54 | MR
[4] Pal J., “On a concept of a derivative among functions defined on the dyadic field”, SIAM J. Math. Anal., 8:3 (1977), 375–391 | DOI | MR | Zbl
[5] Schipp F., Wade W. R., Simon P., Walsh series. An introduction to dyadic harmonic analysis, Akademiai Kiado, Budapest, 1990 | MR
[6] Onneweer C. W., “Differentiation on $p$-adic or $p$-series field”, Linear spaces and approx, Internat. Ser. Numer. Math., 40, Birkhäuser, Basel, 1978, 187–198 | MR
[7] Onneweer C. W., “On the definition of dyadic differentiation”, Appl. Anal., 9 (1979), 267–278 | DOI | MR | Zbl
[8] Fine N. J., “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl
[9] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[10] Golubov B. I., “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | MR | Zbl
[11] Golubov B. I., “Ob ogranichennosti dvoichnykh operatorov Khardi i Khardi–Littlvuda v dvoichnykh prostranstvakh $H$ i BMO”, Anal. Math., 26 (2000), 287–298 | DOI | MR | Zbl
[12] Ladhawala N. R., “Absolute summability of Walsh–Fourier series”, Pacific J. Math., 65 (1976), 103–108 | MR | Zbl