Methods of summability of trigonometric series and function spaces
Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 487-506

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for a trigonometric series to be the Fourier series of a function in the spaces $C(\mathbb T)$, $L^p(\mathbb T)$ with $p\in[1,\infty]$ and $\operatorname{BMO}(\mathbb T)$$L_\Phi^*(\mathbb T)$ are presented.
@article{SM_2002_193_4_a1,
     author = {I. N. Brui},
     title = {Methods of summability of trigonometric series and function spaces},
     journal = {Sbornik. Mathematics},
     pages = {487--506},
     publisher = {mathdoc},
     volume = {193},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a1/}
}
TY  - JOUR
AU  - I. N. Brui
TI  - Methods of summability of trigonometric series and function spaces
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 487
EP  - 506
VL  - 193
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_4_a1/
LA  - en
ID  - SM_2002_193_4_a1
ER  - 
%0 Journal Article
%A I. N. Brui
%T Methods of summability of trigonometric series and function spaces
%J Sbornik. Mathematics
%D 2002
%P 487-506
%V 193
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_4_a1/
%G en
%F SM_2002_193_4_a1
I. N. Brui. Methods of summability of trigonometric series and function spaces. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 487-506. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a1/