@article{SM_2002_193_4_a1,
author = {I. N. Brui},
title = {Methods of summability of trigonometric series and function spaces},
journal = {Sbornik. Mathematics},
pages = {487--506},
year = {2002},
volume = {193},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_4_a1/}
}
I. N. Brui. Methods of summability of trigonometric series and function spaces. Sbornik. Mathematics, Tome 193 (2002) no. 4, pp. 487-506. http://geodesic.mathdoc.fr/item/SM_2002_193_4_a1/
[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR
[2] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965 | MR
[3] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 1, 2, Mir, M., 1985
[4] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958
[5] Tynnov M., “$T$-dopolnitelnye prostranstva koeffitsientov Fure”, Uch. zap. Tartuskogo gos. un-ta, 1966, no. 192, 65–81 | MR | Zbl
[6] Baron S., Vvedenie v teoriyu summiruemosti ryadov, Valgus, Tallin, 1977 | MR | Zbl
[7] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951
[8] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958
[9] Rooney P. G., “On the representation of sequences as Fourier coefficients”, Proc. Amer. Math. Soc., 11 (1960), 762–768 | DOI | MR | Zbl
[10] Brui I. N., “Trigonometricheskie ryady klassov $L^p(\mathbb T)$ i ikh regulyarnye srednie”, Vestsi Akademii navuk Belarusi. Cep. fiz.-mat. navuk, 1996, no. 1, 24–30 | MR | Zbl
[11] Brui I. N., “Trigonometricheskie ryady klassov $L^p(\mathbb T)$, $p\in\left]1,\infty\right[$, i ikh konservativnye srednie”, Matem. zametki, 62:5 (1997), 677–686 | MR | Zbl
[12] Brui I. N., “Trigonometricheskie ryady klassov $L^p(\mathbb T)$ i ikh matrichnye srednie”, Vestsi HAH Belarusi. Cep. fiz.-mat. navuk, 2000, no. 1, 46–49 | MR
[13] Bruj I., Schmieder G., “Real trigonometric series of class BMO and $(C,1)$-means”, Acta Sci. Math. (Szeged), 64 (1998), 483–488 | MR | Zbl
[14] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl
[15] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR
[16] Turetskii A. Kh., “O klassakh nasyscheniya v prostranstve $C$”, Izv. AN SSSR. Ser. matem., 25:3 (1961), 411–442 | MR
[17] Efimov A. V., “O lineinykh metodakh summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 24:5 (1960), 743–756 | MR | Zbl
[18] Pokalo A. K., “Ob odnom klasse lineinykh metodov summirovaniya”, Vestsi Akademii navuk Belaruskai SSR. Ser. fiz.-tekhn. navuk, 1962, no. 1, 24–27 | MR | Zbl
[19] Telyakovskii S. A., “Usloviya integriruemosti trigonometricheskikh ryadov i ikh prilozhenie k izucheniyu lineinykh metodov summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1209–1236 | MR | Zbl
[20] Buntinas M., “Some new multipliers of Fourier series”, Proc. Amer. Math. Soc., 101:3 (1987), 497–502 | DOI | MR | Zbl
[21] Giang D. V., Móricz F., “Multipliers of Fourier transforms and series on $L^1$”, Arch. Math. (Basel), 62:3 (1994), 230–238 | MR | Zbl