Birationally rigid Fano hypersurfaces with isolated singularities
Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 445-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a general Fano hypersurface $V=V_M\subset{\mathbb P}^M$ of index 1 with isolated singularities in general position is birationally rigid. Hence it cannot be fibred into uniruled varieties of smaller dimension by a rational map, and each ${\mathbb Q}$-Fano variety $V'$ with Picard number 1 birationally equivalent to $V$ is in fact isomorphic to $V$. In particular, $V$ is non-rational. The group of birational self-maps of $V$ is either {1} or ${\mathbb Z}/2{\mathbb Z}$, depending on whether $V$ has a terminal point of the maximum possible multiplicity $M- 2$. The proof is based on a combination of the method of maximal singularities and the techniques of hypertangent systems with Shokurov's connectedness principle.
@article{SM_2002_193_3_a8,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid {Fano} hypersurfaces with isolated singularities},
     journal = {Sbornik. Mathematics},
     pages = {445--471},
     year = {2002},
     volume = {193},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid Fano hypersurfaces with isolated singularities
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 445
EP  - 471
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/
LA  - en
ID  - SM_2002_193_3_a8
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid Fano hypersurfaces with isolated singularities
%J Sbornik. Mathematics
%D 2002
%P 445-471
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/
%G en
%F SM_2002_193_3_a8
A. V. Pukhlikov. Birationally rigid Fano hypersurfaces with isolated singularities. Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 445-471. http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/

[1] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[2] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135 (177):4 (1988), 472–496 | MR | Zbl

[3] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of threefolds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[4] Kollár J., et al., “Flips and abundance for algebraic threefolds”, Astérisque, 211, Soc. Math. France, Paris, 1992, 9–27 | MR | Zbl

[5] Pukhlikov A. V., “Birational automorphisms of double spaces with singularities”, J. Math. Sci., 85:4 (1997), 2128–2141 | DOI | MR | Zbl

[6] Pukhlikov A. V., “Birational rigid singular Fano hypersurfaces”, J. Math. Sci., 2001 (to appear)

[7] Corti A., Mella M., Birational geometry of terminal quartic 3-folds, I, E-print math.AG/0102096 | MR

[8] Corti A., Pukhlikov A., Reid M., “Fano 3-fold hypersurfaces”, Explicit birational geometry of threefolds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 175–258 | MR | Zbl

[9] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl

[10] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit birational geometry of threefolds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl

[11] Cheltsov I. A., “Log-kanonicheskie porogi na giperpoverkhnostyakh”, Matem. sb., 192:8 (2001), 155–172 | MR | Zbl

[12] Cheltsov I. A., Park J., Log-canonical thresholds and generalized Eckard points, E-print math.AG/0003121