Birationally rigid Fano hypersurfaces with isolated singularities
Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 445-471

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a general Fano hypersurface $V=V_M\subset{\mathbb P}^M$ of index 1 with isolated singularities in general position is birationally rigid. Hence it cannot be fibred into uniruled varieties of smaller dimension by a rational map, and each ${\mathbb Q}$-Fano variety $V'$ with Picard number 1 birationally equivalent to $V$ is in fact isomorphic to $V$. In particular, $V$ is non-rational. The group of birational self-maps of $V$ is either {1} or ${\mathbb Z}/2{\mathbb Z}$, depending on whether $V$ has a terminal point of the maximum possible multiplicity $M- 2$. The proof is based on a combination of the method of maximal singularities and the techniques of hypertangent systems with Shokurov's connectedness principle.
@article{SM_2002_193_3_a8,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid {Fano} hypersurfaces with isolated singularities},
     journal = {Sbornik. Mathematics},
     pages = {445--471},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid Fano hypersurfaces with isolated singularities
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 445
EP  - 471
VL  - 193
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/
LA  - en
ID  - SM_2002_193_3_a8
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid Fano hypersurfaces with isolated singularities
%J Sbornik. Mathematics
%D 2002
%P 445-471
%V 193
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/
%G en
%F SM_2002_193_3_a8
A. V. Pukhlikov. Birationally rigid Fano hypersurfaces with isolated singularities. Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 445-471. http://geodesic.mathdoc.fr/item/SM_2002_193_3_a8/