Modules over a polynomial ring obtained from
Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 423-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A construction of Cohen–Macaulay modules over a polynomial ring arising in the study of the Cauchy–Fueter equations is extended from quaternions to arbitrary finite-dimensional associative algebras. It is shown for a certain class of algebras that this construction produces Cohen–Macaulay modules, and this class of algebras cannot be enlarged for a perfect base field. Several properties of this construction are also described. For the class of algebras under consideration several invariants of the resulting modules are calculated.
@article{SM_2002_193_3_a7,
     author = {O. N. Popov},
     title = {Modules over a~polynomial ring obtained from},
     journal = {Sbornik. Mathematics},
     pages = {423--443},
     year = {2002},
     volume = {193},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/}
}
TY  - JOUR
AU  - O. N. Popov
TI  - Modules over a polynomial ring obtained from
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 423
EP  - 443
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/
LA  - en
ID  - SM_2002_193_3_a7
ER  - 
%0 Journal Article
%A O. N. Popov
%T Modules over a polynomial ring obtained from
%J Sbornik. Mathematics
%D 2002
%P 423-443
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/
%G en
%F SM_2002_193_3_a7
O. N. Popov. Modules over a polynomial ring obtained from. Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 423-443. http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/

[1] Adams W. W., Loustaunau P., Palamodov V. P., Struppa D. C., “Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring”, Ann. Inst. Fourier, 47:2 (1997), 623–640 | MR | Zbl

[2] Adams W. W., Loustaunau P., “Analysis of the module determining the properties of regular functions of several quaternionic variables”, Pacific J. Math., 196:1 (2000), 1–15 | MR | Zbl

[3] Bruns W., Vetter U., Determinantal rings, Lecture Notes in Math., 1327, Springer-Verlag, Berlin, 1988 | MR

[4] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, Berlin, 1995 | MR | Zbl

[5] Serr Zh.-P., “Lokalnaya algebra i teoriya kratnostei”, Matematika. Sb. per., 7:5 (1963), 3–93

[6] Buchsbaum D. A., Eisenbud D., “What makes a complex exact?”, J. Algebra, 25:2 (1973), 259–268 | DOI | MR | Zbl

[7] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[8] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[9] Burbaki N., Algebra, Glava X, Nauka, M., 1987 | MR