Modules over a~polynomial ring obtained from
Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 423-443

Voir la notice de l'article provenant de la source Math-Net.Ru

A construction of Cohen–Macaulay modules over a polynomial ring arising in the study of the Cauchy–Fueter equations is extended from quaternions to arbitrary finite-dimensional associative algebras. It is shown for a certain class of algebras that this construction produces Cohen–Macaulay modules, and this class of algebras cannot be enlarged for a perfect base field. Several properties of this construction are also described. For the class of algebras under consideration several invariants of the resulting modules are calculated.
@article{SM_2002_193_3_a7,
     author = {O. N. Popov},
     title = {Modules over a~polynomial ring obtained from},
     journal = {Sbornik. Mathematics},
     pages = {423--443},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/}
}
TY  - JOUR
AU  - O. N. Popov
TI  - Modules over a~polynomial ring obtained from
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 423
EP  - 443
VL  - 193
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/
LA  - en
ID  - SM_2002_193_3_a7
ER  - 
%0 Journal Article
%A O. N. Popov
%T Modules over a~polynomial ring obtained from
%J Sbornik. Mathematics
%D 2002
%P 423-443
%V 193
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/
%G en
%F SM_2002_193_3_a7
O. N. Popov. Modules over a~polynomial ring obtained from. Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 423-443. http://geodesic.mathdoc.fr/item/SM_2002_193_3_a7/