On the homogenization of semilinear elliptic operators in
Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 409-422

Voir la notice de l'article provenant de la source Math-Net.Ru

A second-order semilinear elliptic equation whose lower term has power-like growth at infinity with respect to the unknown function is considered. It is proved that a sequence of its solutions in perforated domains converges to a solution in the non-perforated domain as the diameters of the holes converge to zero with a rate depending on the power exponent of the lower term.
@article{SM_2002_193_3_a6,
     author = {H. Matevossian and S. V. Pikulin},
     title = {On the homogenization of semilinear elliptic operators in},
     journal = {Sbornik. Mathematics},
     pages = {409--422},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/}
}
TY  - JOUR
AU  - H. Matevossian
AU  - S. V. Pikulin
TI  - On the homogenization of semilinear elliptic operators in
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 409
EP  - 422
VL  - 193
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/
LA  - en
ID  - SM_2002_193_3_a6
ER  - 
%0 Journal Article
%A H. Matevossian
%A S. V. Pikulin
%T On the homogenization of semilinear elliptic operators in
%J Sbornik. Mathematics
%D 2002
%P 409-422
%V 193
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/
%G en
%F SM_2002_193_3_a6
H. Matevossian; S. V. Pikulin. On the homogenization of semilinear elliptic operators in. Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 409-422. http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/