On the homogenization of semilinear elliptic operators in
Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 409-422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A second-order semilinear elliptic equation whose lower term has power-like growth at infinity with respect to the unknown function is considered. It is proved that a sequence of its solutions in perforated domains converges to a solution in the non-perforated domain as the diameters of the holes converge to zero with a rate depending on the power exponent of the lower term.
@article{SM_2002_193_3_a6,
     author = {H. Matevossian and S. V. Pikulin},
     title = {On the homogenization of semilinear elliptic operators in},
     journal = {Sbornik. Mathematics},
     pages = {409--422},
     year = {2002},
     volume = {193},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/}
}
TY  - JOUR
AU  - H. Matevossian
AU  - S. V. Pikulin
TI  - On the homogenization of semilinear elliptic operators in
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 409
EP  - 422
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/
LA  - en
ID  - SM_2002_193_3_a6
ER  - 
%0 Journal Article
%A H. Matevossian
%A S. V. Pikulin
%T On the homogenization of semilinear elliptic operators in
%J Sbornik. Mathematics
%D 2002
%P 409-422
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/
%G en
%F SM_2002_193_3_a6
H. Matevossian; S. V. Pikulin. On the homogenization of semilinear elliptic operators in. Sbornik. Mathematics, Tome 193 (2002) no. 3, pp. 409-422. http://geodesic.mathdoc.fr/item/SM_2002_193_3_a6/

[1] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymtotic analysis for periodic structures, North-Holland, Amsterdam, 1978 | MR

[3] Damlamian A., Li Ta-Tsien, “Boundary homogenization for elliptic problems”, J. Math. Pures Appl. (9), 66:9 (1987), 351–361 | MR | Zbl

[4] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[5] Skripnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Fizmatlit, M., 1990

[6] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sb., 135:3 (1988), 346–360 | MR | Zbl

[7] Kondratev V. A., Landis E. M., “Polulineinye uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Matem. zametki, 44:4 (1988), 457–468 | MR | Zbl

[8] Tuvaev M. V., “Ob ustranimykh osobykh mnozhestvakh reshenii kvazilineinykh ellipticheskikh uravnenii”, Matem. sb., 185:2 (1994), 107–114 | MR | Zbl

[9] Vazquez J. L., Véron L., “Removable singularities of some strongly nonlinear elliptic equations”, Manuscripta Math., 33 (1980), 129–144 | DOI | MR | Zbl

[10] Vazquez J. L., Véron L., “Singularities of elliptic equations with an exponential nonlinearity”, Math. Ann., 269 (1984), 119–135 | DOI | MR | Zbl

[11] Vazquez J. L., Véron L., “Isolated singularities of some semilinear elliptic equations”, J. Differential Equations, 60 (1985), 301–321 | DOI | MR | Zbl

[12] Matevosyan O. A., Pikulin S. V., “Ob usrednenii slabonelineinykh divergentnykh ellipticheskikh operatorov v perforirovannom kube”, Matem. zametki, 68:3 (2000), 390–398 | MR

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[14] Littman W., Stampacchia G., Weinberger B., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17:1–2 (1963), 43–77 | MR | Zbl

[15] Stampacchia G., “Le problème de Dirichlet pour les équation elliptique second ordre à coefficients discontinus”, Ann. Inst. Fourier, 15:1 (1965), 189–257 | MR | Zbl

[16] Landis E. M., “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka”, UMN, 18:1 (1963), 3–62 | MR | Zbl

[17] Gerver M. L., Landis E. M., “Odno obobschenie teoremy o srednem dlya funktsii mnogikh peremennykh”, Dokl. AN SSSR, 146:4 (1962), 761–764 | MR | Zbl

[18] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR