Traces of operators with relatively compact perturbations
Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 279-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Regularized trace formulae are proved for abstract operators with a perturbing operator $B$ subordinate to the non-perturbed operator $A_0$ in the following sense: $BA_0^{-1}$ is a compact operator in some Schatten–von Neumann class of finite order. Two essentially different cases can be distinguished here: the resolvent of $A_0$ is either of trace class or not. Five theorems describing various cases of operator subordination and the structure of the spectrum of the unperturbed operator are proved.
@article{SM_2002_193_2_a5,
     author = {V. A. Sadovnichii and V. E. Podolskii},
     title = {Traces of operators with relatively compact perturbations},
     journal = {Sbornik. Mathematics},
     pages = {279--302},
     year = {2002},
     volume = {193},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_2_a5/}
}
TY  - JOUR
AU  - V. A. Sadovnichii
AU  - V. E. Podolskii
TI  - Traces of operators with relatively compact perturbations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 279
EP  - 302
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_2_a5/
LA  - en
ID  - SM_2002_193_2_a5
ER  - 
%0 Journal Article
%A V. A. Sadovnichii
%A V. E. Podolskii
%T Traces of operators with relatively compact perturbations
%J Sbornik. Mathematics
%D 2002
%P 279-302
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2002_193_2_a5/
%G en
%F SM_2002_193_2_a5
V. A. Sadovnichii; V. E. Podolskii. Traces of operators with relatively compact perturbations. Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 279-302. http://geodesic.mathdoc.fr/item/SM_2002_193_2_a5/

[1] Sadovnichii V. A., Podolskii V. E., “Regulyarizovannyi sled ogranichennogo vozmuscheniya operatora s yadernoi rezolventoi”, Differents. uravneniya, 34:4 (1999), 556–564 | MR

[2] Sadovnichii V. A., Konyagin S. V., Podolskii V. E., “Regulyarizovannyi sled operatora s yadernoi rezolventoi, vozmuschennogo ogranichennym”, Dokl. RAN, 373:1 (2000), 26–28 | MR

[3] Sadovnichii V. A., Dubrovskii V. V., “Ob odnoi abstraktnoi teoreme teorii vozmuschenii, o formulakh regulyarizovannykh sledov i o dzeta-funktsii operatorov”, Differents. uravneniya, 13:7 (1977), 1264–1271 | MR | Zbl

[4] Sadovnichii V. A., Lyubishkin V. A., “Konechnomernye vozmuscheniya diskretnykh operatorov i formuly sledov”, Funkts. analiz i ego prilozh., 20:3 (1986), 55–65 | MR

[5] Dubrovskii V. V., “Abstraktnye formuly regulyarizovannykh sledov ellipticheskikh gladkikh differentsialnykh operatorov, zadannykh na kompaktnykh mnogoobraziyakh”, Differents. uravneniya, 27:12 (1991), 2164–2166 | MR | Zbl

[6] Dostanić M., “Trace formulas of Gelfand–Levitan type”, Publ. Inst. Math. (Beograd) (N.S.), 55 (1994), 51–63 | MR | Zbl

[7] Lax P. D., “Trace formulas for the Schroedinger operator”, Comm. Pure Appl. Math., 47 (1994), 503–512 | DOI | MR | Zbl

[8] Dostanić M., “Spectral properties of the operator of Riesz potential type”, Proc. Amer. Math. Soc., 126:8 (1998), 2291–2297 | DOI | MR | Zbl

[9] Murtazin Kh. Kh., Fazullin Z. Yu., “O formulakh sledov dlya neyadernykh vozmuschenii”, Dokl. RAN, 368:4 (1999), 442–444 | MR | Zbl

[10] Sadovnichii V. A., Podolskii V. E., “Sledy operatorov s otnositelno yadernym vozmuscheniem”, Dokl. RAN, 378:3 (2001), 324–325 | MR

[11] Lidskii V. B., Sadovnichii V. A., “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Funkts. analiz i ego prilozh., 1:2 (1967), 52–59 | MR | Zbl

[12] Sadovnichii V. A., Dubrovskii V. V., “O klassicheskoi formule pervogo regulyarizovannogo sleda operatora Laplasa s nechetnym potentsialom na sfere”, Trudy sem. im. I. G. Petrovskogo, 19, Izd-vo MGU, M., 1996, 37–72

[13] Podol'skii V. E., “On the summability of regularized sums of eigenvalues of the Laplace–Beltrami operator with potential on symmetric spaces of rank one”, Russian J. Math. Phys., 4:1 (1996), 123–130 | MR

[14] Aleksandrova E. V., Bochkareva O. V., Podolskii V. E., “Summirovanie regulyarizovannykh sledov singulyarnogo operatora Shturma–Liuvillya”, Differents. uravneniya, 33:3 (1997), 291–295 | MR | Zbl

[15] Koplienko L. S., “O formule sledov dlya vozmuschenii neyadernogo tipa”, Sib. matem. zhurn., 25:5 (1984), 62–71 | MR | Zbl

[16] Neidhardt H., “Spectral shift function and Gilbert–Schmidt perturbation: extensions of some work of L. S. Koplienko”, Math. Nachr., 138 (1988), 7–25 | DOI | MR | Zbl

[17] Dostanić M., “Trace formulas for nonnuclear perturbations of selfadjoint operators”, Publ. Inst. Math. (Beograd) (N. S.), 54 (1993), 71–79 | MR | Zbl

[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[19] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[20] Yafaev D. R., Matematicheskaya teoriya rasseyaniya, Izd-vo S.-Peterburgskogo un-ta, SPb., 1994 | MR

[21] Dubrovskii V. V., “Regulyarizovannyi sled stepeni operatora Laplasa s potentsialom na kvadrate”, Matem. zametki, 60:1 (1996), 136–138 | MR | Zbl