Bounds for convergence and uniqueness in Abel--Goncharov interpolation
Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 247-277
Voir la notice de l'article provenant de la source Math-Net.Ru
In the scale of the growth types of entire functions defined in terms of
certain comparison functions the maximal convergence and uniqueness spaces are found for Abel–Goncharov interpolation problems with nodes of interpolation (either arbitrary complex or real) in classes defined by a sequence of majorants of the nodes.
@article{SM_2002_193_2_a4,
author = {A. Yu. Popov},
title = {Bounds for convergence and uniqueness in {Abel--Goncharov} interpolation},
journal = {Sbornik. Mathematics},
pages = {247--277},
publisher = {mathdoc},
volume = {193},
number = {2},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_2_a4/}
}
A. Yu. Popov. Bounds for convergence and uniqueness in Abel--Goncharov interpolation. Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 247-277. http://geodesic.mathdoc.fr/item/SM_2002_193_2_a4/