Bounds for convergence and uniqueness in Abel--Goncharov interpolation
Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 247-277

Voir la notice de l'article provenant de la source Math-Net.Ru

In the scale of the growth types of entire functions defined in terms of certain comparison functions the maximal convergence and uniqueness spaces are found for Abel–Goncharov interpolation problems with nodes of interpolation (either arbitrary complex or real) in classes defined by a sequence of majorants of the nodes.
@article{SM_2002_193_2_a4,
     author = {A. Yu. Popov},
     title = {Bounds for convergence and uniqueness in {Abel--Goncharov} interpolation},
     journal = {Sbornik. Mathematics},
     pages = {247--277},
     publisher = {mathdoc},
     volume = {193},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_2_a4/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Bounds for convergence and uniqueness in Abel--Goncharov interpolation
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 247
EP  - 277
VL  - 193
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_2_a4/
LA  - en
ID  - SM_2002_193_2_a4
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Bounds for convergence and uniqueness in Abel--Goncharov interpolation
%J Sbornik. Mathematics
%D 2002
%P 247-277
%V 193
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_2_a4/
%G en
%F SM_2002_193_2_a4
A. Yu. Popov. Bounds for convergence and uniqueness in Abel--Goncharov interpolation. Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 247-277. http://geodesic.mathdoc.fr/item/SM_2002_193_2_a4/