On the rigidity of a~glued piecewise convex surface
Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 231-246

Voir la notice de l'article provenant de la source Math-Net.Ru

A rigidity test is considered for a piecewise convex surface glued from $C^2$-smooth pieces of convex surfaces with piecewise regular boundaries. The entire surface does not have to be convex; moreover, non-convex surfaces with the so-called $A$-star-shape condition are allowed. This condition is a broad generalization of the ordinary star-shape condition; it means that the points of the surface are accessible by a certain family of curves. (In the case of the ordinary star-shape condition this family of curves consists of straight rays emanating from one point inside the surface.)
@article{SM_2002_193_2_a3,
     author = {P. E. Markov and O. Trejos},
     title = {On the rigidity of a~glued piecewise convex surface},
     journal = {Sbornik. Mathematics},
     pages = {231--246},
     publisher = {mathdoc},
     volume = {193},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/}
}
TY  - JOUR
AU  - P. E. Markov
AU  - O. Trejos
TI  - On the rigidity of a~glued piecewise convex surface
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 231
EP  - 246
VL  - 193
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/
LA  - en
ID  - SM_2002_193_2_a3
ER  - 
%0 Journal Article
%A P. E. Markov
%A O. Trejos
%T On the rigidity of a~glued piecewise convex surface
%J Sbornik. Mathematics
%D 2002
%P 231-246
%V 193
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/
%G en
%F SM_2002_193_2_a3
P. E. Markov; O. Trejos. On the rigidity of a~glued piecewise convex surface. Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 231-246. http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/