On the rigidity of a glued piecewise convex surface
Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 231-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A rigidity test is considered for a piecewise convex surface glued from $C^2$-smooth pieces of convex surfaces with piecewise regular boundaries. The entire surface does not have to be convex; moreover, non-convex surfaces with the so-called $A$-star-shape condition are allowed. This condition is a broad generalization of the ordinary star-shape condition; it means that the points of the surface are accessible by a certain family of curves. (In the case of the ordinary star-shape condition this family of curves consists of straight rays emanating from one point inside the surface.)
@article{SM_2002_193_2_a3,
     author = {P. E. Markov and O. Trejos},
     title = {On the rigidity of a~glued piecewise convex surface},
     journal = {Sbornik. Mathematics},
     pages = {231--246},
     year = {2002},
     volume = {193},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/}
}
TY  - JOUR
AU  - P. E. Markov
AU  - O. Trejos
TI  - On the rigidity of a glued piecewise convex surface
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 231
EP  - 246
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/
LA  - en
ID  - SM_2002_193_2_a3
ER  - 
%0 Journal Article
%A P. E. Markov
%A O. Trejos
%T On the rigidity of a glued piecewise convex surface
%J Sbornik. Mathematics
%D 2002
%P 231-246
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/
%G en
%F SM_2002_193_2_a3
P. E. Markov; O. Trejos. On the rigidity of a glued piecewise convex surface. Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 231-246. http://geodesic.mathdoc.fr/item/SM_2002_193_2_a3/

[1] Boyarskii B. V., Vekua I. N., “Dokazatelstvo zhestkosti kusochno regulyarnykh zamknutykh vypuklykh poverkhnostei neotritsatelnoi krivizny”, Izv. AN SSSR. Ser. matem., 22:2 (1958), 165–176 | MR

[2] Boyarskii B. V., “O zhestkosti nekotorykh sostavnykh poverkhnostei”, UMN, 14:6 (1959), 141–146 | MR | Zbl

[3] Sabitov I. Kh., “Ob odnom uslovii zhestkosti sostavnykh poverkhnostei”, Matem. zametki, 2:1 (1967), 105–113 | MR

[4] Fomenko V. T., Markov P. E., “O zhestkosti zerkalno vypuchennykh poverkhnostei”, Matem. zametki, 19:3 (1976), 469–479 | MR | Zbl

[5] Fomenko V. T., Markov P. E., “O zhestkosti odnogo klassa vnutrenne skleennykh poverkhnostei”, Ukr. geom. sb., 1977, no. 20, 141–146 | MR

[6] Markov P. E., “O zhestkosti zvezdnykh vnutrenne skleennykh poverkhnostei”, Matem. zametki, 22:3 (1977), 321–333 | MR | Zbl

[7] Markov P. E., Shkryl E. V., “O zhestkosti kusochno vypuklykh poverkhnostei tipa tora”, Matem. sb., 191:4 (2000), 107–144 | MR | Zbl

[8] Blyashke V., Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti Einshteina, ONTI, M.–L., 1935

[9] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[10] Fomenko V. T., “Nekotorye rezultaty teorii beskonechno malykh izgibanii poverkhnostei”, Matem. sb., 72:3 (1967), 388–411 | MR | Zbl