Pseudodifference operators and uniform convergence of
Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 205-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of pseudodifference operator is introduced. The properties of a class of pseudodifference operators in spaces of fractional quotients are studied. A local theorem on the uniform convergence of divided differences of arbitrary order for an approximate solution is established. In particular, the local infinite differentiability of a precise solution of operator equations of elliptic type with locally infinitely differentiable right-hand side is proved on the basis of a numerical method. Examples related to applications are presented.
@article{SM_2002_193_2_a2,
     author = {I. K. Lifanov and L. N. Poltavskii},
     title = {Pseudodifference operators and uniform convergence of},
     journal = {Sbornik. Mathematics},
     pages = {205--230},
     year = {2002},
     volume = {193},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_2_a2/}
}
TY  - JOUR
AU  - I. K. Lifanov
AU  - L. N. Poltavskii
TI  - Pseudodifference operators and uniform convergence of
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 205
EP  - 230
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_2_a2/
LA  - en
ID  - SM_2002_193_2_a2
ER  - 
%0 Journal Article
%A I. K. Lifanov
%A L. N. Poltavskii
%T Pseudodifference operators and uniform convergence of
%J Sbornik. Mathematics
%D 2002
%P 205-230
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2002_193_2_a2/
%G en
%F SM_2002_193_2_a2
I. K. Lifanov; L. N. Poltavskii. Pseudodifference operators and uniform convergence of. Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 205-230. http://geodesic.mathdoc.fr/item/SM_2002_193_2_a2/

[1] Lifanov I. K., Poltavskii L. N., “Prostranstva drobnykh otnoshenii, diskretnye operatory i ikh prilozheniya, I”, Matem. sb., 190:9 (1999), 41–98 | MR | Zbl

[2] Lifanov I. K., Poltavskii L. N., “Prostranstva drobnykh otnoshenii, diskretnye operatory i ikh prilozheniya, II”, Matem. sb., 190:11 (1999), 67–134 | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, t. 1, 2, Mir, M., 1965 | MR