Approximation of differential inclusions
Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 187-203

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods for the approximation of a differential inclusion with right-hand side satisfying the Carathéodory conditions are considered. Necessary and sufficient conditions are obtained for the stability of the approximation of a differential inclusion under internal and external perturbations, which means that “small” changes (in the sense of the Hausdorff distance) of the right-hand side of the inclusion result in a “small” change of the solution set.
@article{SM_2002_193_2_a1,
     author = {A. I. Bulgakov and V. V. Skomorokhov},
     title = {Approximation of differential inclusions},
     journal = {Sbornik. Mathematics},
     pages = {187--203},
     publisher = {mathdoc},
     volume = {193},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_2_a1/}
}
TY  - JOUR
AU  - A. I. Bulgakov
AU  - V. V. Skomorokhov
TI  - Approximation of differential inclusions
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 187
EP  - 203
VL  - 193
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_2_a1/
LA  - en
ID  - SM_2002_193_2_a1
ER  - 
%0 Journal Article
%A A. I. Bulgakov
%A V. V. Skomorokhov
%T Approximation of differential inclusions
%J Sbornik. Mathematics
%D 2002
%P 187-203
%V 193
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_2_a1/
%G en
%F SM_2002_193_2_a1
A. I. Bulgakov; V. V. Skomorokhov. Approximation of differential inclusions. Sbornik. Mathematics, Tome 193 (2002) no. 2, pp. 187-203. http://geodesic.mathdoc.fr/item/SM_2002_193_2_a1/