Righteous isometries of weakly symmetric spaces
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 143-156

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a righteous diffeomorphism of a Riemannian manifold is introduced. A righteous diffeomorphism of a manifold $M$ defines a weakly symmetric structure on $M$. For weakly symmetric Riemannian manifolds that are homogeneous spaces of semisimple Lie groups a complete classification of righteous diffeomorphisms (isometries) is obtained.
@article{SM_2002_193_1_a5,
     author = {O. S. Yakimova},
     title = {Righteous  isometries of weakly symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {193},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a5/}
}
TY  - JOUR
AU  - O. S. Yakimova
TI  - Righteous  isometries of weakly symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 143
EP  - 156
VL  - 193
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_1_a5/
LA  - en
ID  - SM_2002_193_1_a5
ER  - 
%0 Journal Article
%A O. S. Yakimova
%T Righteous  isometries of weakly symmetric spaces
%J Sbornik. Mathematics
%D 2002
%P 143-156
%V 193
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_1_a5/
%G en
%F SM_2002_193_1_a5
O. S. Yakimova. Righteous  isometries of weakly symmetric spaces. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a5/