Righteous isometries of weakly symmetric spaces
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 143-156
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of a righteous diffeomorphism of a Riemannian
manifold is introduced. A righteous diffeomorphism of a manifold $M$
defines a weakly symmetric structure on $M$. For weakly symmetric Riemannian
manifolds that are homogeneous spaces of semisimple Lie groups a complete classification of righteous diffeomorphisms (isometries) is obtained.
@article{SM_2002_193_1_a5,
author = {O. S. Yakimova},
title = {Righteous isometries of weakly symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {143--156},
publisher = {mathdoc},
volume = {193},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a5/}
}
O. S. Yakimova. Righteous isometries of weakly symmetric spaces. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a5/