$D_\infty$-differential $A_\infty$-algebras
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 119-142

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the construction of a $D_\infty$-differential $A_\infty$-(co)algebra is introduced and basic homotopy properties of this construction are studied. The connection between $D_\infty$-differential $A_\infty$-(co)algebras and spectral sequences is established, which enables us to construct the structure of an $A_\infty$ -coalgebra on the Milnor coalgebra directly from the differentials of the Adams spectral sequence.
@article{SM_2002_193_1_a4,
     author = {S. V. Lapin},
     title = {$D_\infty$-differential $A_\infty$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {119--142},
     publisher = {mathdoc},
     volume = {193},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a4/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - $D_\infty$-differential $A_\infty$-algebras
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 119
EP  - 142
VL  - 193
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_1_a4/
LA  - en
ID  - SM_2002_193_1_a4
ER  - 
%0 Journal Article
%A S. V. Lapin
%T $D_\infty$-differential $A_\infty$-algebras
%J Sbornik. Mathematics
%D 2002
%P 119-142
%V 193
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_1_a4/
%G en
%F SM_2002_193_1_a4
S. V. Lapin. $D_\infty$-differential $A_\infty$-algebras. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 119-142. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a4/