$k$-Regular maps into Euclidean spaces and the~Borsuk--Boltyanskii problem
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 73-82

Voir la notice de l'article provenant de la source Math-Net.Ru

The Borsuk–Boltyanskii problem is solved for odd $k$, that is, the minimum dimension of a Euclidean space is determined into which any $n$-dimensional polyhedron (compactum) can be $k$-regularly embedded. A new lower bound is obtained for even $k$.
@article{SM_2002_193_1_a1,
     author = {S. A. Bogatyi},
     title = {$k${-Regular} maps into {Euclidean} spaces and {the~Borsuk--Boltyanskii} problem},
     journal = {Sbornik. Mathematics},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {193},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - $k$-Regular maps into Euclidean spaces and the~Borsuk--Boltyanskii problem
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 73
EP  - 82
VL  - 193
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/
LA  - en
ID  - SM_2002_193_1_a1
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T $k$-Regular maps into Euclidean spaces and the~Borsuk--Boltyanskii problem
%J Sbornik. Mathematics
%D 2002
%P 73-82
%V 193
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/
%G en
%F SM_2002_193_1_a1
S. A. Bogatyi. $k$-Regular maps into Euclidean spaces and the~Borsuk--Boltyanskii problem. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/