$k$-Regular maps into Euclidean spaces and the Borsuk–Boltyanskii problem
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 73-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Borsuk–Boltyanskii problem is solved for odd $k$, that is, the minimum dimension of a Euclidean space is determined into which any $n$-dimensional polyhedron (compactum) can be $k$-regularly embedded. A new lower bound is obtained for even $k$.
@article{SM_2002_193_1_a1,
     author = {S. A. Bogatyi},
     title = {$k${-Regular} maps into {Euclidean} spaces and {the~Borsuk{\textendash}Boltyanskii} problem},
     journal = {Sbornik. Mathematics},
     pages = {73--82},
     year = {2002},
     volume = {193},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - $k$-Regular maps into Euclidean spaces and the Borsuk–Boltyanskii problem
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 73
EP  - 82
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/
LA  - en
ID  - SM_2002_193_1_a1
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T $k$-Regular maps into Euclidean spaces and the Borsuk–Boltyanskii problem
%J Sbornik. Mathematics
%D 2002
%P 73-82
%V 193
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/
%G en
%F SM_2002_193_1_a1
S. A. Bogatyi. $k$-Regular maps into Euclidean spaces and the Borsuk–Boltyanskii problem. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/

[1] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[2] Engelking R., Dimension theory, North-Holland, Amsterdam, 1978 | MR | Zbl

[3] Hurewicz W., “Über Abbildungen von endlichdimensionalen Räumen auf Teilmengen Cartesischer Räume”, Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl., 24/25 (1933), 754–768 ; Collected works of Witold Hurewicz, Amer. Math. Soc., Providence, RI, 1995, 295–309 | Zbl

[4] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersections of compacta of complementary dimensions in Euclidean space”, Topology Appl., 38:3 (1991), 237–253 | DOI | MR | Zbl

[5] McCullough D., Rubin L. R., “Some $m$-dimensional compacta admitting a dense set of imbeddings into $\mathbb R^{2m}$”, Fund. Math., 133:3 (1989), 237–245 | MR | Zbl

[6] Dranishnikov A. N., Schepin E. V., “Ob ustoichivosti peresechenii kompaktov v evklidovom prostranstve”, UMN, 44:5 (1989), 194–195 | MR | Zbl

[7] Krasinkiewicz J., “Imbeddings into $\mathbb R^n$ and dimension of products”, Fund. Math., 133:3 (1989), 247–253 | MR | Zbl

[8] Spie. z S., “Imbeddings in $\mathbb R^{2m}$ of $m$-dimensional compacta with $\dim(X\times X)2m$”, Fund. Math., 134:2 (1990), 105–115 | MR | Zbl

[9] Borsuk K., “On the $k$-independent subsets of the Euclidean space and of the Hilbert space”, Bull. Polish Acad. Sci. Math., 5:4 (1957), 351–356 | MR | Zbl

[10] Borsuk K., “Zamechaniya k vlozhimosti mnozhestv v evklidovy prostranstva”, Trudy III Vsesoyuzn. matem. s'ezda, T. 4, 1959, 197–198 | MR

[11] Boltyanskii V. G., “Otobrazheniya kompaktov v evklidovy prostranstva”, Izv. AN SSSR. Ser. matem., 23 (1959), 871–892 | MR | Zbl

[12] Schepin E. V., “Arifmetika teorii razmernosti”, UMN, 53:5 (1998), 115–212 | MR | Zbl

[13] Ryshkov S. S., “O $k$-regulyarnykh vlozheniyakh”, Dokl. AN SSSR, 127:2 (1959), 272–273 | MR | Zbl

[14] Boltyanskii V. G., Ryshkov S. S., Shashkin Yu. A., “O $k$-regulyarnykh vlozheniyakh i ikh primenenii k teorii priblizheniya funktsii”, UMN, 15:6 (1960), 125–132 | MR

[15] Van Kampen E. R., “Komplexe in euklidischen Räumen”, Abh. Math. Sem. Univ. Hamburg, 9 (1932), 72–78 | Zbl

[16] Flores A., “Über $n$-dimensionale Komplexe die im $R_{2n+1}$ absolut selbstverschlungen sind”, Erg. Math. Kolloq., 6 (1935), 4–7 | Zbl

[17] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[18] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Matem. zametki, 59:5 (1996), 663–670 | MR | Zbl

[19] Shashkin Yu. A., “Sistemy Korovkina v prostranstvakh nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 26:4 (1962), 495–512 | MR | Zbl

[20] Bogatyi S. A., Volovikov A. Yu., “Teorema Borsuka–Ulama dlya predstavlenii i $d$-transversali”, Izv. RAN. Ser. matem. (to appear)

[21] Bogatyi S. A., “Geometriya otobrazhenii v evklidovo prostranstvo”, UMN, 53:5 (1998), 27–56 | MR | Zbl

[22] Bogatyi S. A., “Pontrjagin's embedding theorem – $k$-regular embeddings, converse”, Mezhdunarodnaya konferentsiya, posvyaschennaya 90-letiyu so dnya rozhdeniya L. S. Pontryagina, Tezisy dokladov. Algebra, geometriya i topologiya (Moskva, 31 avgusta – 6 sentyabrya 1998 g.), Izd-vo MGU, M., 1998, 59–61

[23] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[24] Bogatyi S. A., “Tsvetnaya teorema Tverberg”, Vestn. MGU. Ser. 1. Matem., mekh., 1999, no. 3, 14–19 | MR | Zbl

[25] Hurewicz W., “Sur la dimension des produits Cartésiens”, Ann. of Math. (2), 36:1 (1935), 194–197 ; Collected works of Witold Hurewicz, Amer. Math. Soc., Providence, RI, 1995, 335–339 | DOI | MR | Zbl

[26] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, UMN, 23:5 (143) (1968), 3–49 | MR | Zbl

[27] Shashkin Yu. A., “O $k$-regulyarnykh vlozheniyakh grafov v evklidovy prostranstva”, UMN, 18:4 (1963), 195–199 | MR | Zbl

[28] Shashkin Yu. A., “Interpolyatsionnye semeistva funktsii i vlozheniya mnozhestv v evklidovy i proektivnye prostranstva”, Dokl. AN SSSR, 174:5 (1967), 1030–1032 | MR | Zbl

[29] Khadzhiivanov N., “Nepreryvnye otobrazheniya knopok v $\mathbb R^n$”, Byull. Polskoi Akad. nauk, 22:3 (1974), 283–287

[30] Hopf H., “Freie Überdeckungen und freie Abbildungen”, Fund. Math., 28 (1937), 33–57 | Zbl

[31] Schepin E. V., “Ob odnoi probleme L. A. Tumarkina”, Dokl. AN SSSR, 217:1 (1974), 42–43 | MR | Zbl

[32] Izydorek M., Jaworowski J., “Antipodal coincidence for maps of spheres into complexes”, Proc. Amer. Math. Soc., 123:6 (1995), 1947–1950 | DOI | MR | Zbl