$k$-Regular maps into Euclidean spaces and the~Borsuk--Boltyanskii problem
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 73-82
Voir la notice de l'article provenant de la source Math-Net.Ru
The Borsuk–Boltyanskii problem is solved for odd $k$, that is, the minimum dimension of a Euclidean space is determined into which any $n$-dimensional polyhedron (compactum) can be
$k$-regularly embedded. A new lower bound is obtained for even $k$.
@article{SM_2002_193_1_a1,
author = {S. A. Bogatyi},
title = {$k${-Regular} maps into {Euclidean} spaces and {the~Borsuk--Boltyanskii} problem},
journal = {Sbornik. Mathematics},
pages = {73--82},
publisher = {mathdoc},
volume = {193},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/}
}
S. A. Bogatyi. $k$-Regular maps into Euclidean spaces and the~Borsuk--Boltyanskii problem. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a1/