Approximation properties of the poles of diagonal Pad\'e approximants for certain generalizations of Markov functions
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1837-1866
Voir la notice de l'article provenant de la source Math-Net.Ru
A non-linear system of differential equations (‘`generalized Dubrovin system") is obtained to describe the behaviour of the zeros of polynomials orthogonal on several intervals that lie in lacunae between the intervals. The same system is shown to describe the dynamical behaviour of zeros of this kind for more general orthogonal polynomials: the denominators of the diagonal Padé approximants of meromorphic functions on a real hyperelliptic Riemann surface.
On the basis of this approach several refinements of Rakhmanov’s results on the convergence of diagonal Padé approximants for rational perturbations of Markov functions are obtained.
@article{SM_2002_193_12_a4,
author = {S. P. Suetin},
title = {Approximation properties of the poles of diagonal {Pad\'e} approximants for certain generalizations of {Markov} functions},
journal = {Sbornik. Mathematics},
pages = {1837--1866},
publisher = {mathdoc},
volume = {193},
number = {12},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/}
}
TY - JOUR AU - S. P. Suetin TI - Approximation properties of the poles of diagonal Pad\'e approximants for certain generalizations of Markov functions JO - Sbornik. Mathematics PY - 2002 SP - 1837 EP - 1866 VL - 193 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/ LA - en ID - SM_2002_193_12_a4 ER -
%0 Journal Article %A S. P. Suetin %T Approximation properties of the poles of diagonal Pad\'e approximants for certain generalizations of Markov functions %J Sbornik. Mathematics %D 2002 %P 1837-1866 %V 193 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/ %G en %F SM_2002_193_12_a4
S. P. Suetin. Approximation properties of the poles of diagonal Pad\'e approximants for certain generalizations of Markov functions. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1837-1866. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/