@article{SM_2002_193_12_a4,
author = {S. P. Suetin},
title = {Approximation properties of the poles of diagonal {Pad\'e} approximants for certain generalizations of {Markov} functions},
journal = {Sbornik. Mathematics},
pages = {1837--1866},
year = {2002},
volume = {193},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/}
}
TY - JOUR AU - S. P. Suetin TI - Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions JO - Sbornik. Mathematics PY - 2002 SP - 1837 EP - 1866 VL - 193 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/ LA - en ID - SM_2002_193_12_a4 ER -
S. P. Suetin. Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1837-1866. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/
[1] Chebyshev P. L., “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. akademii nauk, T. III, 1855, 636–664 ; Полное собрание сочинений, Т. II, Изд-во АН СССР, М.–Л., 1948, 103–126 | MR
[2] Markoff A. A., “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19 (1895), 93–104 | DOI | MR
[3] Markov A. A., “O kornyakh nekotorykh uravnenii, I”, Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948, 34–43 | MR
[4] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl
[5] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl
[6] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97 (139) (1975), 607–629 | MR | Zbl
[7] Rakhmanov E. A., “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104 (146):2 (1977), 271–291 | MR | Zbl
[8] Peherstorfer F., Zeros of polynomials orthogonal on several intervals, , v1, 28 Mar 2002 E-print math-ph/0203058 | MR
[9] Gonchar A. A., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118 (160):4 (8) (1982), 535–556 | MR | Zbl
[10] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl
[11] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), Spec. Iss. (1996), 121–193 | MR | Zbl
[12] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR
[13] Stahl H., “Conjectures around Baker–Gammel–Wills conjecture”, Constr. Approx., 13 (1997), 287–292 | DOI | MR | Zbl
[14] Buslaev V. I.,, “Simple counterexample to the Baker–Gammel–Wills conjecture”, East J. Approx., 7:4 (2001), 515–517 | MR | Zbl
[15] Buslaev V. I., “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl
[16] Bernshtein S. N., “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Sobranie sochinenii, T. II, AN SSSR, M., 1952, 7–106
[17] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[18] Suetin S. P., “O dinamike “bluzhdayuschikh” nulei polinomov, ortogonalnykh na neskolkikh otrezkakh”, UMN, 57:2 (2002), 199–200 | MR | Zbl
[19] Akhiezer N. I., “Ob ortogonalnykh mnogochlenakh na neskolkikh intervalakh”, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl
[20] Akhiezer N. I., Tomchuk Yu. Ya., “K teorii ortogonalnykh mnogochlenov na neskolkikh intervalakh”, Dokl. AN SSSR, 138:4 (1961), 743–746 | MR | Zbl
[21] Akhiezer N. I., “Kontinualnye analogi ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 141:2 (1961), 263–266 | MR | Zbl
[22] Nuttall J., Singh R. S., “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21 (1977), 1–42 | DOI | MR | Zbl
[23] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl
[24] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3 (1969), 127–232 | DOI | MR | Zbl
[25] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125 (167):2 (10) (1984), 231–258 | MR
[26] Deift P., Kriecherbauer T., McLaughlin K. T-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Preprint, 1998 | MR
[27] Chen Y., Lawrence N., A generalisation of the Chebyshev polynomials, Preprint, 2001
[28] Dumas S., Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zürich, 1908 | Zbl
[29] Nikishin E. M., “O skhodimosti diagonalnykh approksimatsii Pade dlya nekotorykh funktsii”, Matem. sb., 101 (143):2 (1976), 280–292 | MR | Zbl
[30] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–180 | MR
[31] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR
[32] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960
[33] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[34] Krazer A., Lehrbuch der Thetafunktionen, V. XXIV, Chelsea Publishing Company, New York, 1970 | Zbl
[35] Dzhenkins Dzh., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962
[36] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[37] Dubrovin B. A., “Periodicheskie zadachi dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego prilozh., 9:3 (1975), 41–52 | MR
[38] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR
[39] Rakhmanov E. A., Nekotorye voprosy skhodimosti diagonalnykh approksimatsii Pade, Diss. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1983
[40] Maksvell Dzh. K., Traktat ob elektrichestve i magnetizme, T. I, Nauka, M., 1989 | MR
[41] Shiffer M., “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige: R. Kurant, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953, 234–301