Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1837-1866 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A non-linear system of differential equations (‘`generalized Dubrovin system") is obtained to describe the behaviour of the zeros of polynomials orthogonal on several intervals that lie in lacunae between the intervals. The same system is shown to describe the dynamical behaviour of zeros of this kind for more general orthogonal polynomials: the denominators of the diagonal Padé approximants of meromorphic functions on a real hyperelliptic Riemann surface. On the basis of this approach several refinements of Rakhmanov’s results on the convergence of diagonal Padé approximants for rational perturbations of Markov functions are obtained.
@article{SM_2002_193_12_a4,
     author = {S. P. Suetin},
     title = {Approximation properties of the poles of diagonal {Pad\'e} approximants for certain generalizations of {Markov} functions},
     journal = {Sbornik. Mathematics},
     pages = {1837--1866},
     year = {2002},
     volume = {193},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1837
EP  - 1866
VL  - 193
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/
LA  - en
ID  - SM_2002_193_12_a4
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions
%J Sbornik. Mathematics
%D 2002
%P 1837-1866
%V 193
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/
%G en
%F SM_2002_193_12_a4
S. P. Suetin. Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1837-1866. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a4/

[1] Chebyshev P. L., “O nepreryvnykh drobyakh”, Uchenye zapiski Imp. akademii nauk, T. III, 1855, 636–664 ; Полное собрание сочинений, Т. II, Изд-во АН СССР, М.–Л., 1948, 103–126 | MR

[2] Markoff A. A., “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19 (1895), 93–104 | DOI | MR

[3] Markov A. A., “O kornyakh nekotorykh uravnenii, I”, Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948, 34–43 | MR

[4] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl

[5] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl

[6] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97 (139) (1975), 607–629 | MR | Zbl

[7] Rakhmanov E. A., “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104 (146):2 (1977), 271–291 | MR | Zbl

[8] Peherstorfer F., Zeros of polynomials orthogonal on several intervals, , v1, 28 Mar 2002 E-print math-ph/0203058 | MR

[9] Gonchar A. A., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118 (160):4 (8) (1982), 535–556 | MR | Zbl

[10] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl

[11] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), Spec. Iss. (1996), 121–193 | MR | Zbl

[12] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[13] Stahl H., “Conjectures around Baker–Gammel–Wills conjecture”, Constr. Approx., 13 (1997), 287–292 | DOI | MR | Zbl

[14] Buslaev V. I.,, “Simple counterexample to the Baker–Gammel–Wills conjecture”, East J. Approx., 7:4 (2001), 515–517 | MR | Zbl

[15] Buslaev V. I., “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl

[16] Bernshtein S. N., “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Sobranie sochinenii, T. II, AN SSSR, M., 1952, 7–106

[17] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[18] Suetin S. P., “O dinamike “bluzhdayuschikh” nulei polinomov, ortogonalnykh na neskolkikh otrezkakh”, UMN, 57:2 (2002), 199–200 | MR | Zbl

[19] Akhiezer N. I., “Ob ortogonalnykh mnogochlenakh na neskolkikh intervalakh”, Dokl. AN SSSR, 134:1 (1960), 9–12 | MR | Zbl

[20] Akhiezer N. I., Tomchuk Yu. Ya., “K teorii ortogonalnykh mnogochlenov na neskolkikh intervalakh”, Dokl. AN SSSR, 138:4 (1961), 743–746 | MR | Zbl

[21] Akhiezer N. I., “Kontinualnye analogi ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 141:2 (1961), 263–266 | MR | Zbl

[22] Nuttall J., Singh R. S., “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21 (1977), 1–42 | DOI | MR | Zbl

[23] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42 (1984), 299–386 | DOI | MR | Zbl

[24] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3 (1969), 127–232 | DOI | MR | Zbl

[25] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125 (167):2 (10) (1984), 231–258 | MR

[26] Deift P., Kriecherbauer T., McLaughlin K. T-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Preprint, 1998 | MR

[27] Chen Y., Lawrence N., A generalisation of the Chebyshev polynomials, Preprint, 2001

[28] Dumas S., Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zürich, 1908 | Zbl

[29] Nikishin E. M., “O skhodimosti diagonalnykh approksimatsii Pade dlya nekotorykh funktsii”, Matem. sb., 101 (143):2 (1976), 280–292 | MR | Zbl

[30] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–180 | MR

[31] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR

[32] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960

[33] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[34] Krazer A., Lehrbuch der Thetafunktionen, V. XXIV, Chelsea Publishing Company, New York, 1970 | Zbl

[35] Dzhenkins Dzh., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962

[36] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[37] Dubrovin B. A., “Periodicheskie zadachi dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego prilozh., 9:3 (1975), 41–52 | MR

[38] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[39] Rakhmanov E. A., Nekotorye voprosy skhodimosti diagonalnykh approksimatsii Pade, Diss. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1983

[40] Maksvell Dzh. K., Traktat ob elektrichestve i magnetizme, T. I, Nauka, M., 1989 | MR

[41] Shiffer M., “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige: R. Kurant, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953, 234–301