Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1801-1836

Voir la notice de l'article provenant de la source Math-Net.Ru

The stationary Navier–Stokes system of equations is considered in a domain $\Omega \subset\mathbb R^3$ coinciding for large $|x|$ with the layer $\Pi =\mathbb R^2\times (0,1)$. A theorem is proved about the asymptotic behaviour of the solutions as $|x|\to\infty$. In particular, it is proved that for arbitrary data of the problem the solutions having non-zero flux through a cylindrical cross-section of the layer behave at infinity like the solutions of the linear Stokes system.
@article{SM_2002_193_12_a3,
     author = {K. Pileckas},
     title = {Asymptotics of solutions of the stationary {Navier--Stokes} system of equations in a~domain of layer type},
     journal = {Sbornik. Mathematics},
     pages = {1801--1836},
     publisher = {mathdoc},
     volume = {193},
     number = {12},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/}
}
TY  - JOUR
AU  - K. Pileckas
TI  - Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1801
EP  - 1836
VL  - 193
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/
LA  - en
ID  - SM_2002_193_12_a3
ER  - 
%0 Journal Article
%A K. Pileckas
%T Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type
%J Sbornik. Mathematics
%D 2002
%P 1801-1836
%V 193
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/
%G en
%F SM_2002_193_12_a3
K. Pileckas. Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1801-1836. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/