Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1801-1836
Voir la notice de l'article provenant de la source Math-Net.Ru
The stationary Navier–Stokes system of equations is considered in a domain $\Omega \subset\mathbb R^3$ coinciding for large $|x|$ with the layer $\Pi =\mathbb R^2\times (0,1)$. A theorem is proved about the asymptotic behaviour of the solutions as $|x|\to\infty$. In particular, it is proved that for arbitrary data of the problem the solutions having non-zero flux through a cylindrical cross-section of the layer behave at infinity like the solutions of the linear Stokes system.
@article{SM_2002_193_12_a3,
author = {K. Pileckas},
title = {Asymptotics of solutions of the stationary {Navier--Stokes} system of equations in a~domain of layer type},
journal = {Sbornik. Mathematics},
pages = {1801--1836},
publisher = {mathdoc},
volume = {193},
number = {12},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/}
}
TY - JOUR AU - K. Pileckas TI - Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type JO - Sbornik. Mathematics PY - 2002 SP - 1801 EP - 1836 VL - 193 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/ LA - en ID - SM_2002_193_12_a3 ER -
K. Pileckas. Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1801-1836. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/