Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1801-1836 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stationary Navier–Stokes system of equations is considered in a domain $\Omega \subset\mathbb R^3$ coinciding for large $|x|$ with the layer $\Pi =\mathbb R^2\times (0,1)$. A theorem is proved about the asymptotic behaviour of the solutions as $|x|\to\infty$. In particular, it is proved that for arbitrary data of the problem the solutions having non-zero flux through a cylindrical cross-section of the layer behave at infinity like the solutions of the linear Stokes system.
@article{SM_2002_193_12_a3,
     author = {K. Pileckas},
     title = {Asymptotics of solutions of the stationary {Navier{\textendash}Stokes} system of equations in a~domain of layer type},
     journal = {Sbornik. Mathematics},
     pages = {1801--1836},
     year = {2002},
     volume = {193},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/}
}
TY  - JOUR
AU  - K. Pileckas
TI  - Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1801
EP  - 1836
VL  - 193
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/
LA  - en
ID  - SM_2002_193_12_a3
ER  - 
%0 Journal Article
%A K. Pileckas
%T Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type
%J Sbornik. Mathematics
%D 2002
%P 1801-1836
%V 193
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/
%G en
%F SM_2002_193_12_a3
K. Pileckas. Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1801-1836. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a3/

[1] Heywood J. G., “On uniqueness question in the theory of viscous flow”, Acta Math., 136 (1976), 61–102 | DOI | MR | Zbl

[2] Kapitanskii L. V., Piletskas K. I., “O prostranstvakh solenoidalnykh vektornykh polei i kraevykh zadachakh dlya uravnenii Nave–Stoksa v oblastyakh s nekompaktnymi granitsami”, Tr. MIAN, 159, Nauka, M., 1983, 5–36 | MR | Zbl

[3] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i ob obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zapiski nauch. sem. LOMI, 59, Nauka, L., 1976, 81–116 | MR | Zbl

[4] Ladyzhenskaya O. A., Solonnikov V. A., “O razreshimosti kraevykh i nachalno-kraevykh zadach dlya uravnenii Nave–Stoksa v oblastyakh s nekompaktnymi granitsami”, Vestn. LGU, 1977, no. 13, 39–47 | Zbl

[5] Ladyzhenskaya O. A., Solonnikov V. A., “O nakhozhdenii reshenii kraevykh zadach dlya statsionarnykh uravnenii Stoksa i Nave–Stoksa, imeyuschikh neogranichennyi integral Dirikhle”, Zapiski nauch. sem. LOMI, 96, Nauka, L., 1980, 117–160 | MR | Zbl

[6] Nazarov S. A., Pileckas K., “Asymptotics of solutions to Stokes and Navier–Stokes equations in domains with paraboloidal outlets to infinity”, Rend. Sem. Mat. Univ. Padova, 99 (1998), 1–43 | MR | Zbl

[7] Piletskas K. I., “O suschestvovanii reshenii uravnenii Nave–Stoksa, imeyuschikh beskonechnuyu dissipatsiyu energii, v odnom klasse oblastei s nekompaktnoi granitsei”, Zapiski nauch. sem. LOMI, 110, Nauka, L., 1981, 180–202 | MR | Zbl

[8] Solonnikov V. A., Piletskas K. I., “O nekotorykh prostranstvakh solenoidalnykh vektorov i o razreshimosti kraevoi zadachi dlya sistemy uravnenii Nave–Stoksa v oblastyakh s nekompaktnymi granitsami”, Zapiski nauch. sem. LOMI, 73, Nauka, L., 1977, 136–151 | MR | Zbl

[9] Solonnikov V. A., “On the solvability of boundary and initial-boundary value problems for the Navier–Stokes system in domains with noncompact boundaries”, Pacific J. Math., 93:2 (1981), 443–458 | MR | Zbl

[10] Solonnikov V. A., “O resheniyakh statsionarnykh uravnenii Nave–Stoksa s beskonechnym integralom Dirikhle”, Zapiski nauch. sem. LOMI, 115, Nauka, L., 1982, 257–263 | MR

[11] Solonnikov V. A., “Stokes and Navier–Stokes equations in domains with noncompact boundaries”, Nonlinear partial differential equations and their applications, Coll. France Semin., V. 4, Res. Notes Math., 84, 1983, 240–349 | MR | Zbl

[12] Solonnikov V. A., “Boundary and initial-boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries”, Mathematical topics in fluid mechanics, Proc. of the summer course (Lisbon, Portugal, September 9–13, 1991), eds. J. F. Rodrigues et al., Longman, Harlow, Essex, 1993, 117–162 | MR | Zbl

[13] Pileckas K., “Weighted $L^q$-solvability for the steady Stokes system in domains with noncompact boundaries”, Math. Models Methods Appl. Sci., 6:1 (1996), 97–136 | DOI | MR | Zbl

[14] Pileckas K., “Classical solvability and uniform estimates for the steady Stokes system in domains with noncompact boundaries”, Math. Models Methods Appl. Sci., 6:2 (1996), 149–167 | DOI | MR | Zbl

[15] Pileckas K., “Strong solutions of the steady nonlinear Navier–Stokes system in domains with exits to infinity”, Rend. Sem. Mat. Univ. Padova, 97 (1997), 236–267 | MR

[16] Pileckas K., “Recent advances in the theory of Stokes and Navier–Stokes equations in domains with noncompact boundaries”, Mathematical theory in fluid mechanics, Lectures of the 4th winter school (Paseky, Czech Republic, December 3–9, 1995), eds. G. P. Galdi et al., Longman, Harlow, Essex, 1996, 30–85 | MR | Zbl

[17] Nazarov S. A., Pileckas K., “On the solvability of the Stokes and Navier–Stokes problems in the domains that are layer-like at infinity”, J. Math. Fluid Mech., 1:1 (1999), 78–116 | DOI | MR | Zbl

[18] Nazarov S. A., Pileckas K., “The asymptotic properties of the solutions to the Stokes problem in domains that are layer-like at infinity”, J. Math. Fluid Mech., 1:2 (1999), 131–167 | DOI | MR | Zbl

[19] Nazarov S. A., Pileckas K., “On the Fredholm property of the Stokes operator in a layer-like domain”, Z. Anal. Anwendungen, 20:1 (2001), 155–182 | MR | Zbl

[20] Nazarov S. A., Piletskas K. I., “Fredgolmovost operatora zadachi Neimana v oblastyakh s vykhodom na beskonechnost v vide sloya”, Algebra i analiz, 8:6 (1996), 57–104 | MR

[21] Kapitanskii L. V., Piletskas K. I., “O nekotorykh zadachakh vektornogo analiza”, Zapiski nauch. sem. LOMI, 138, Nauka, L., 1984, 65–85 | MR | Zbl

[22] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR