Positive-definite splines of special form
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1771-1800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Even positive-definite splines with support in $[-1,1]$ that are equal to real algebraic polynomials on $[0,1]$ are investigated. Examples of such splines are presented. Under consideration are the $e$-splines, which have several extremal properties, and the positive-definite $A$-splines, which have the maximum possible smoothness on $\mathbb R$. An estimate of the approximation by a linear combination of shifts of an $A$-spline is indicated. New relations for the hypergeometric function ${_1F_2}$ are found.
@article{SM_2002_193_12_a2,
     author = {V. P. Zastavnyi and R. M. Trigub},
     title = {Positive-definite splines of special form},
     journal = {Sbornik. Mathematics},
     pages = {1771--1800},
     year = {2002},
     volume = {193},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a2/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
AU  - R. M. Trigub
TI  - Positive-definite splines of special form
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1771
EP  - 1800
VL  - 193
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a2/
LA  - en
ID  - SM_2002_193_12_a2
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%A R. M. Trigub
%T Positive-definite splines of special form
%J Sbornik. Mathematics
%D 2002
%P 1771-1800
%V 193
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a2/
%G en
%F SM_2002_193_12_a2
V. P. Zastavnyi; R. M. Trigub. Positive-definite splines of special form. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1771-1800. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a2/

[1] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979 | MR | Zbl

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Nauka, M., 1974

[3] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[4] Trigub R. M., “Nekotorye svoistva preobrazovaniya Fure mery i ikh primenenie”, Teoriya priblizheniya funktsii, Trudy mezhdunarodnoi konferentsii po teorii priblizheniya funktsii (Kiev, 1983), Nauka, M., 1987, 439–443

[5] Trigub R. M., “Kriterii kharakteristicheskoi funktsii i priznak tipa Poia dlya radialnykh funktsii neskolkikh peremennykh”, Teoriya veroyatnostei i ee prim., 34 (1989), 805–810 | MR

[6] Zastavnyi V. P., Trigub R. M., Polozhitelno opredelennye splainy, Dep. v Ukr. NIINTI. No593-Uk.87

[7] Trigub R. M., “Polozhitelno opredelennye radialnye funktsii i splainy”, Mezhdunarodnaya konferentsiya po konstruktivnoi teorii funktsii, Tezisy dokladov (Varna, 25–31 maya 1987 g.), Sofiya, 1987, 123 | Zbl

[8] Trigub R. M., “Polozhitelno opredelennye funktsii i splainy”, Teoriya funktsii i priblizhenii, Trudy 5-i Saratovskoi zimnei shkoly, Chast I (25 yanvarya – 4 fevralya 1990 g.), Saratov, 1992, 68–75 | MR

[9] Trigub R. M., Some topics in Fourier analysis and approximation theory, Preprint, Donetsk, 1995 ; E-print funct-an/9612008 | MR

[10] Zastavnyi V. P., Preobrazovanie Fure mery i nekotorye voprosy teorii priblizhenii, Dis. $\dots$ kand. fiz.-matem. nauk, Donetsk, 1987

[11] Trigub R. M., “O polozhitelno opredelennykh radialnykh splainakh spetsialnogo vida”, Optimization of finite element approximation splines and wavelets, Mezhdunarodnaya konferentsiya OFEA'2001. Tezisy dokladov (Sankt-Peterburg, 25–29 iyunya 2001 g.), 174

[12] Wendland H., “Piecewise polinomial, positive definite and compactly supported radial functions of minimal degree”, Adv. Comput. Math., 4 (1995), 389–396 | DOI | MR | Zbl

[13] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatlit, M., 1961

[14] Levin B. Ya., Tselye funktsii. (Kurs lektsii.), MGU, M., 1971

[15] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[16] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl

[17] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[18] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[19] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Fizmatlit, M., 1974

[20] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, T. I, II, Fizmatlit, M., 1970

[21] Buhmann M. D., “A new class of radial basis functions with compact support”, Math. Comp., 70:233 (2000), 307–318 | DOI | MR

[22] Askey R., Pollard H., “Some absolutely monotonic and completely monotonic functions”, SIAM J. Math. Anal., 5 (1974), 58–63 | DOI | MR | Zbl

[23] Zastavnyi V. P., Polozhitelno opredelennye funktsii, zavisyaschie ot normy. Reshenie problemy Shenberga, Preprint In-ta prikl. matem. i mekh. AN Ukrainy. 09.91, Donetsk, 1991

[24] Fields J. L., Ismail M. E., “On the positivity of some $_1F_2$'s”, SIAM J. Math. Anal., 6 (1975), 551–559 | DOI | MR | Zbl

[25] Gasper G., “Positive integrals of Bessel functions”, SIAM J. Math. Anal., 6:5 (1975), 868–881 | DOI | MR | Zbl

[26] Moak D. S., “Completely monotonic functions of the form $s^{-b}(s^2+1)^{-a}$”, Rocky Mountain J. Math., 17:4 (1987), 719–725 | MR | Zbl

[27] Zastavnyi V. P., “O polozhitelnoi opredelennosti nekotorykh funktsii”, Dokl. RAN, 365:2 (1999), 159–161 | MR | Zbl