@article{SM_2002_193_12_a2,
author = {V. P. Zastavnyi and R. M. Trigub},
title = {Positive-definite splines of special form},
journal = {Sbornik. Mathematics},
pages = {1771--1800},
year = {2002},
volume = {193},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a2/}
}
V. P. Zastavnyi; R. M. Trigub. Positive-definite splines of special form. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1771-1800. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a2/
[1] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979 | MR | Zbl
[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Nauka, M., 1974
[3] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl
[4] Trigub R. M., “Nekotorye svoistva preobrazovaniya Fure mery i ikh primenenie”, Teoriya priblizheniya funktsii, Trudy mezhdunarodnoi konferentsii po teorii priblizheniya funktsii (Kiev, 1983), Nauka, M., 1987, 439–443
[5] Trigub R. M., “Kriterii kharakteristicheskoi funktsii i priznak tipa Poia dlya radialnykh funktsii neskolkikh peremennykh”, Teoriya veroyatnostei i ee prim., 34 (1989), 805–810 | MR
[6] Zastavnyi V. P., Trigub R. M., Polozhitelno opredelennye splainy, Dep. v Ukr. NIINTI. No593-Uk.87
[7] Trigub R. M., “Polozhitelno opredelennye radialnye funktsii i splainy”, Mezhdunarodnaya konferentsiya po konstruktivnoi teorii funktsii, Tezisy dokladov (Varna, 25–31 maya 1987 g.), Sofiya, 1987, 123 | Zbl
[8] Trigub R. M., “Polozhitelno opredelennye funktsii i splainy”, Teoriya funktsii i priblizhenii, Trudy 5-i Saratovskoi zimnei shkoly, Chast I (25 yanvarya – 4 fevralya 1990 g.), Saratov, 1992, 68–75 | MR
[9] Trigub R. M., Some topics in Fourier analysis and approximation theory, Preprint, Donetsk, 1995 ; E-print funct-an/9612008 | MR
[10] Zastavnyi V. P., Preobrazovanie Fure mery i nekotorye voprosy teorii priblizhenii, Dis. $\dots$ kand. fiz.-matem. nauk, Donetsk, 1987
[11] Trigub R. M., “O polozhitelno opredelennykh radialnykh splainakh spetsialnogo vida”, Optimization of finite element approximation splines and wavelets, Mezhdunarodnaya konferentsiya OFEA'2001. Tezisy dokladov (Sankt-Peterburg, 25–29 iyunya 2001 g.), 174
[12] Wendland H., “Piecewise polinomial, positive definite and compactly supported radial functions of minimal degree”, Adv. Comput. Math., 4 (1995), 389–396 | DOI | MR | Zbl
[13] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatlit, M., 1961
[14] Levin B. Ya., Tselye funktsii. (Kurs lektsii.), MGU, M., 1971
[15] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[16] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl
[17] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl
[18] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR
[19] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Fizmatlit, M., 1974
[20] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, T. I, II, Fizmatlit, M., 1970
[21] Buhmann M. D., “A new class of radial basis functions with compact support”, Math. Comp., 70:233 (2000), 307–318 | DOI | MR
[22] Askey R., Pollard H., “Some absolutely monotonic and completely monotonic functions”, SIAM J. Math. Anal., 5 (1974), 58–63 | DOI | MR | Zbl
[23] Zastavnyi V. P., Polozhitelno opredelennye funktsii, zavisyaschie ot normy. Reshenie problemy Shenberga, Preprint In-ta prikl. matem. i mekh. AN Ukrainy. 09.91, Donetsk, 1991
[24] Fields J. L., Ismail M. E., “On the positivity of some $_1F_2$'s”, SIAM J. Math. Anal., 6 (1975), 551–559 | DOI | MR | Zbl
[25] Gasper G., “Positive integrals of Bessel functions”, SIAM J. Math. Anal., 6:5 (1975), 868–881 | DOI | MR | Zbl
[26] Moak D. S., “Completely monotonic functions of the form $s^{-b}(s^2+1)^{-a}$”, Rocky Mountain J. Math., 17:4 (1987), 719–725 | MR | Zbl
[27] Zastavnyi V. P., “O polozhitelnoi opredelennosti nekotorykh funktsii”, Dokl. RAN, 365:2 (1999), 159–161 | MR | Zbl