Effective approach to least deviation problems
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1749-1769 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A hierarchy of extremal polynomials described in terms of real hyperelliptic curves of genus $g\geqslant0$ is constructed. These polynomials depend on $g$ integer-valued and $g$ continuous parameters. The classical Chebyshëv polynomials are obtained for $g=0$ and the Zolotarëv polynomials for $g=1$.
@article{SM_2002_193_12_a1,
     author = {A. B. Bogatyrev},
     title = {Effective approach to least deviation problems},
     journal = {Sbornik. Mathematics},
     pages = {1749--1769},
     year = {2002},
     volume = {193},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Effective approach to least deviation problems
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1749
EP  - 1769
VL  - 193
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/
LA  - en
ID  - SM_2002_193_12_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Effective approach to least deviation problems
%J Sbornik. Mathematics
%D 2002
%P 1749-1769
%V 193
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/
%G en
%F SM_2002_193_12_a1
A. B. Bogatyrev. Effective approach to least deviation problems. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1749-1769. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/

[1] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[2] Bernshtein S. N., Ekstremalnye svoistva mnogochlenov, ONTI, M., 1937

[3] Lebedev V. I., “Extremal polynomials with restrictions and optimal algorithms”, Alekseev A. S., Bakhvalov N. S., Advanced mathematics: computation and applications, NCC Publishers, Novosibirsk, 1995, 491–502 | MR

[4] Remez Ya. I., Obschie vychislitelnye metody chebyshevskogo priblizheniya, Izd-vo AN USSR, Kiev, 1957

[5] Lebedev V. I., “A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. I; II”, Russian J. Numer. Anal. Math. Modelling, 8:3 (1993), 195–222 | MR | Zbl

[6] Peherstorfer F., Schiefermayr K., “Description of extremal polynomials on several intervals and their computation. I; II”, Acta Math. Hungar., 83 (1999), 71–102 ; 103–128 | MR

[7] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[8] Zadachi Arnolda, ed. Sevryuk M. B., Fazis, M., 2000 | MR

[9] Sodin M. L., Yuditskii P. M., “Funktsii, naimenee uklonyayuschiesya ot nulya na zamknutykh podmnozhestvakh deistvitelnoi osi”, Algebra i analiz, 4:2 (1992), 1–61 | MR

[10] Bogatyrev A. B., “Ob effektivnom vychislenii mnogochlenov Chebysheva dlya neskolkikh otrezkov”, Matem. sb., 190:11 (1999), 15–50 | MR | Zbl

[11] Bogatyrev A. B., “Predstavlenie prostranstv modulei krivykh i vychislenie ekstremalnykh mnogochlenov” (to appear)

[12] Bogatyrev A. B., “Ekstremalnye mnogochleny na yazyke grafov” (to appear)

[13] Natanzon S. M., “Moduli veschestvennykh algebraicheskikh krivykh i ikh superanalogov”, UMN, 54:6 (1999), 3–60 | MR | Zbl

[14] Gunning R. C., Lectures on Riemann surfaces, Princeton Univ. Press, Princeton, NJ, 1966 | MR | Zbl

[15] Birman J. S., Braids, links, and mapping class groups, Princeton Univ. Press, Princeton, NJ, 1974 | MR

[16] Vasilev V. A., Vetvyaschiesya integraly, MTsNMO, M., 2000

[17] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR