Effective approach to least deviation problems
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1749-1769

Voir la notice de l'article provenant de la source Math-Net.Ru

A hierarchy of extremal polynomials described in terms of real hyperelliptic curves of genus $g\geqslant0$ is constructed. These polynomials depend on $g$ integer-valued and $g$ continuous parameters. The classical Chebyshëv polynomials are obtained for $g=0$ and the Zolotarëv polynomials for $g=1$.
@article{SM_2002_193_12_a1,
     author = {A. B. Bogatyrev},
     title = {Effective approach to least deviation problems},
     journal = {Sbornik. Mathematics},
     pages = {1749--1769},
     publisher = {mathdoc},
     volume = {193},
     number = {12},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Effective approach to least deviation problems
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1749
EP  - 1769
VL  - 193
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/
LA  - en
ID  - SM_2002_193_12_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Effective approach to least deviation problems
%J Sbornik. Mathematics
%D 2002
%P 1749-1769
%V 193
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/
%G en
%F SM_2002_193_12_a1
A. B. Bogatyrev. Effective approach to least deviation problems. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1749-1769. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a1/