Continuity in $\Lambda$-variation of functions of several variables and convergence of multiple Fourier series
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1731-1748 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behaviour of rectangular partial sums of the Fourier series of functions of several variables having bounded $\Lambda$-variation is considered. It is proved that if a continuous function is also continuous in harmonic variation, then its Fourier series uniformly converges in the sense of Pringsheim. On the other hand, it is demonstrated that in dimensions greater than 2 there always exists a continuous function of bounded harmonic variation with Fourier series divergent over cubes at the origin.
@article{SM_2002_193_12_a0,
     author = {A. N. Bakhvalov},
     title = {Continuity in $\Lambda$-variation of functions of several variables and convergence of multiple {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {1731--1748},
     year = {2002},
     volume = {193},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a0/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - Continuity in $\Lambda$-variation of functions of several variables and convergence of multiple Fourier series
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1731
EP  - 1748
VL  - 193
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_12_a0/
LA  - en
ID  - SM_2002_193_12_a0
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T Continuity in $\Lambda$-variation of functions of several variables and convergence of multiple Fourier series
%J Sbornik. Mathematics
%D 2002
%P 1731-1748
%V 193
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2002_193_12_a0/
%G en
%F SM_2002_193_12_a0
A. N. Bakhvalov. Continuity in $\Lambda$-variation of functions of several variables and convergence of multiple Fourier series. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1731-1748. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a0/

[1] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] Saakyan A. A., “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN Arm. SSR, 21:6 (1986), 517–529 | MR

[3] Sablin A. I., Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1987

[4] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Ser. matem., 1987, no. 10, 66–68 | MR | Zbl

[5] Sargsyan O. G., “O skhodimosti i yavlenii Gibbsa kratnykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. NAN Armenii. Ser. matem., 28:3 (1993), 3–20 | MR | Zbl

[6] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia Math., 55:1 (1976), 87–95 | MR | Zbl

[7] Foran J., Fleissner R., “A note on $\Lambda$-bounded variation”, Real Anal. Exchange, 4 (1978/79), 185–191 | MR

[8] Prus-Wiśniowski F., “Bounded harmonic variation and the Garsia–Sawyer class”, Real Anal. Exchange, 20:1 (1994/95), 37–38 | MR

[9] Dragoshanskii O. S., “O nepreryvnosti dvumernoi $\Lambda$-variatsii”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokl. 11-i Saratovskoi zimnei shkoly, Izd-vo GosUNTs “Kolledzh”, Saratov, 2002, 71–72

[10] Khardi G., Littlvud Dzh., Polia G., Neravenstva, IL, M., 1948

[11] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961 | MR