On the existence of periodic solutions of equations with strongly increasing principal part
Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1707-1729 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author continues the extension of the theory of boundary-value problems to ordinary differential equations and inclusions with discontinuous right-hand sides on the basis of the construction of a new version of the method of translation along trajectories. A machinery for the proof of the existence of periodic solutions of second-order equations with superlinearly increasing terms is developed.
@article{SM_2002_193_11_a5,
     author = {V. V. Filippov},
     title = {On the existence of periodic solutions of equations with strongly increasing principal part},
     journal = {Sbornik. Mathematics},
     pages = {1707--1729},
     year = {2002},
     volume = {193},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_11_a5/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - On the existence of periodic solutions of equations with strongly increasing principal part
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1707
EP  - 1729
VL  - 193
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_11_a5/
LA  - en
ID  - SM_2002_193_11_a5
ER  - 
%0 Journal Article
%A V. V. Filippov
%T On the existence of periodic solutions of equations with strongly increasing principal part
%J Sbornik. Mathematics
%D 2002
%P 1707-1729
%V 193
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2002_193_11_a5/
%G en
%F SM_2002_193_11_a5
V. V. Filippov. On the existence of periodic solutions of equations with strongly increasing principal part. Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1707-1729. http://geodesic.mathdoc.fr/item/SM_2002_193_11_a5/

[1] Mawhin J., “Continuation theorems and periodic solutions of ordinary differential equations”, Topological methods in differential equations and inclusions, Kluwer Acad. Publ., Dordrecht, 1995, 291–376 | MR

[2] Filippov V. V., “O gomologicheskikh svoistvakh mnozhestv reshenii obyknovennykh differentsialnykh uravnenii”, Matem. sb., 188:6 (1997), 139–160 | MR | Zbl

[3] Filippov V. V., “Smes metodov Lere–Shaudera i Puankare–Andronova v zadache o periodicheskikh resheniyakh obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 35:12 (1999), 1709–1711 | MR | Zbl

[4] Filippov V. V., “Remarks on periodic solutions of ordinary differential equations”, J. Dynam. Control Systems, 6:3 (2000), 431–451 | DOI | MR | Zbl

[5] Filippov V. V., “Topologicheskoe stroenie prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, UMN, 48:1 (1993), 103–154 | MR | Zbl

[6] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1993 | MR | Zbl

[7] Filippov V. V., “Basic topological structures of the theory of ordinary differential equations”, Topology in nonlinear analysis, Banach Center Publ., 35, Polish Acad. Sci., Warsawa, 1996, 171–192 | MR | Zbl

[8] Filippov V. V., Basic topological structures of ordinary differential equations, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl

[9] Filippov V. V., “O differentsialnykh vklyucheniyakh vtorogo poryadka”, Fundament. i prikl. matem., 3:2 (1997), 587–623 | MR | Zbl

[10] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[11] Filippov V. V., “O teorii zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 185:11 (1994), 95–118

[12] Filippov V. V., “Chto luchshe v teorii kraevykh zadach dlya obyknovennykh differentsialnykh uravnenii, metod Lere–Shaudera ili sdvig vdol traektorii?”, Differents. uravneniya, 37:8 (2001), 1049–1062 | MR

[13] Gossez J.-P., Omari P., “Nonresonance with respect to the Fučik spectrum for periodic solutions of second order ordinary differential equations”, Nonlinear Anal., 14 (1990), 1079–1104 | DOI | MR

[14] Filippov V. V., “O teoreme edinstvennosti resheniya zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya”, Differents. uravneniya, 30:6 (1994), 1005–1009 | MR | Zbl

[15] Habets P., Omari P., Zanolin F., “Nonresonance conditions on the potential with respect to the Fučik spectrum for the boundary value problem”, Rocky Mountain J. Math., 25:4 (1995), 1305–1340 | DOI | MR | Zbl

[16] Filippov V. V., “O suschestvovanii periodicheskikh reshenii”, Matem. zametki, 61:5 (1997), 769–784 | MR | Zbl