The indices of central simple algebras over function fields of projective spaces over $P_{n,r}$-fields
Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1691-1705 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

$K$ be a field of characteristic zero and $\operatorname{Br}K$ its Brauer group. Bounds for the indices of elements of $\operatorname{Br}K$ depending on their exponents are obtained for function fields $K$ of projective spaces and projective curves defined over a $P_{n,r}$-fields.
@article{SM_2002_193_11_a4,
     author = {S. V. Tikhonov and V. I. Yanchevskii},
     title = {The indices of central simple algebras over function fields of projective spaces over $P_{n,r}$-fields},
     journal = {Sbornik. Mathematics},
     pages = {1691--1705},
     year = {2002},
     volume = {193},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_11_a4/}
}
TY  - JOUR
AU  - S. V. Tikhonov
AU  - V. I. Yanchevskii
TI  - The indices of central simple algebras over function fields of projective spaces over $P_{n,r}$-fields
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1691
EP  - 1705
VL  - 193
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_11_a4/
LA  - en
ID  - SM_2002_193_11_a4
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%A V. I. Yanchevskii
%T The indices of central simple algebras over function fields of projective spaces over $P_{n,r}$-fields
%J Sbornik. Mathematics
%D 2002
%P 1691-1705
%V 193
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2002_193_11_a4/
%G en
%F SM_2002_193_11_a4
S. V. Tikhonov; V. I. Yanchevskii. The indices of central simple algebras over function fields of projective spaces over $P_{n,r}$-fields. Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1691-1705. http://geodesic.mathdoc.fr/item/SM_2002_193_11_a4/

[1] Albert A. A., Structure of algebras, Amer. Math. Soc. Colloquium Publ., 24, Amer. Math. Soc., New York, 1939 | MR | MR | Zbl

[2] Deuring M., Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, 41, Springer-Verlag, Berlin, 1968 | MR

[3] Zheglov A. B., “O stroenii dvumernykh lokalnykh tel”, Izv. RAN. Ser. matem., 65:1 (2001), 25–60 | MR | Zbl

[4] Colliot-Thelénèm J.-L., Ojanguren M., Parimala R., Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes, 2000-40, d'Université de Paris – Sud., Orsay

[5] Brauer R., “Untersuchungen über die arithmetischen Eigenschften von Gruppen linearer Substitutionen”, Math. Z., 31 (1929), 733–747 | DOI | MR

[6] Saltman D. J., “Division algebras over $p$-adic curves”, J. Ramanujan Math. Soc., 12:21 (1997), 25–47 | MR | Zbl

[7] Saltman D. J., “Correction to: Division algebras over $p$-adic curves”, J. Ramanujan Math. Soc., 13:2 (1998), 125–129 | MR | Zbl

[8] van den Bergh M., Algebraic subfields and splitting fields of division algebras over function fields, Ph. D. thesis, Universiteit Antwerpen, Wilrijk, 1985

[9] Steiner P. A. J., “Groupe de Brauer des corps de fractions rationnelles à coefficients complexes”, Enseign. Math. (2), 30:1–2 (1984), 115–140 | MR | Zbl

[10] Rehmann U., Tikhonov S. V., Yanchevskii V. I., “Two-torsion of the Brauer goups of hyperelliptic curves and unramified algebras over their function fields”, Comm. Algebra, 29:9 (2001), 3971–3987 | DOI | MR | Zbl

[11] Margolin G. L., Rehmann U., Yanchevskii V. I., “Generation of the 2-torsion part of the Brauer group of local quintic by quaternion algebras, the totally splitting case”, Algebraic K-theory and its applications (Trieste, 1997), World Scientific, Singapore, 1999, 503–535 | MR | Zbl

[12] Tankeev S. G., “O gruppe Brauera”, Izv. RAN. Ser. matem., 64:4 (2000), 787–806 | MR | Zbl

[13] Tankeev S. G., “O gruppe Brauera arifmeticheskoi skhemy”, Izv. RAN. Ser. matem., 65:2 (2001), 155–186 | MR | Zbl

[14] Colliot-Thelénè J.-L., Sansuc J.-J., “The rationality problem for fields of invariants under algebraic groups (with special regards to the Brauer group)”, 9th ELAM (Santiago de Chile), Lecture Notes, 1988

[15] Faddeev D. K., “Prostye algebry nad polem algebraicheskikh funktsii ot odnoi peremennoi”, Tr. MIAN, 38, Nauka, M., 1951, 321–344 | MR | Zbl

[16] Grothendieck A., “Le groupe de Brauer”, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 46–188 | MR

[17] Colliot-Thélène J.-L., Swinnerton-Dyer P., “Hasse principle and weak approximation for pencils of Severi–Brauer and similar varieties”, J. Reine Angew. Math., 453 (1994), 49–112 | MR | Zbl

[18] Bloch S., “Torsion algebraic cycles, $K_2$, and Brauer goups of function fields”, Bull. Amer. Math. Soc., 80 (1974), 941–945 | DOI | MR | Zbl