Implicit differential equations and vector fields with non-isolated singular points
Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1671-1690 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Vector fields with singularities that are not isolated, but form a smooth submanifold of the phase space of codimension 2 are studied. Fields of this kind occur, for instance, in the analysis of implicit differential equations. Furthermore, under slight perturbations of the original problem the variety of singular points does not disappear or degenerate, but merely deforms. Results on the structure of invariant manifolds of such fields are obtained, along with smooth normal forms for certain cases.
@article{SM_2002_193_11_a3,
     author = {A. O. Remizov},
     title = {Implicit differential equations and vector fields with non-isolated singular points},
     journal = {Sbornik. Mathematics},
     pages = {1671--1690},
     year = {2002},
     volume = {193},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_11_a3/}
}
TY  - JOUR
AU  - A. O. Remizov
TI  - Implicit differential equations and vector fields with non-isolated singular points
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1671
EP  - 1690
VL  - 193
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_11_a3/
LA  - en
ID  - SM_2002_193_11_a3
ER  - 
%0 Journal Article
%A A. O. Remizov
%T Implicit differential equations and vector fields with non-isolated singular points
%J Sbornik. Mathematics
%D 2002
%P 1671-1690
%V 193
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2002_193_11_a3/
%G en
%F SM_2002_193_11_a3
A. O. Remizov. Implicit differential equations and vector fields with non-isolated singular points. Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1671-1690. http://geodesic.mathdoc.fr/item/SM_2002_193_11_a3/

[1] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Izd-vo UdGU, Izhevsk, 2000

[3] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 1, VINITI, M., 1985, 7–146 | MR

[4] Arnold V. I., Kontaktnaya struktura, relaksatsionnye kolebaniya i osobye tochki neyavnykh differentsialnykh uravnenii. Izbrannoe-60, Fazis, M., 1997 | MR

[5] Davydov A. A., “Normalnaya forma uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funkts. analiz i ego prilozh., 19:2 (1985), 1–10 | MR | Zbl

[6] Davydov A. A., Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[7] Davydov A. A., Ortiz-Bobadilya L., “Normalnye formy slozhennykh elementarnykh osobykh tochek”, UMN, 50:6 (1995), 175–177 | MR

[8] Davydov A. A., Rosales-Gonsales E., “Polnaya klassifikatsiya tipichnykh lineinykh differentsialnykh uravnenii vtorogo poryadka s chastnymi proizvodnymi na ploskosti”, Dokl. RAN, 350:2 (1996), 151–154 | MR | Zbl

[9] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1968 | Zbl

[10] Cibrario M., “Sulla reduzione a forma canonica delle equazioni lineari alle derivative parzialy di secondo ordine di tipo misto”, Rend. Lombardo II, 65 (1932), 889–906 | Zbl

[11] Dara L., “Singularities generiques des equations differentielles multiformes”, Bol. Soc. Brasil. Mat., 6:2 (1975), 95–129 | DOI | MR

[12] Remizov A. O., “O pravilnykh osobykh tochkakh obyknovennykh differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnykh”, Differents. uravneniya, 38:5 (2002), 622–630 | MR | Zbl

[13] Pkhakadze A. V., Shestakov A. A., “O klassifikatsii osobykh tochek differentsialnogo uravneniya pervogo poryadka, ne razreshennogo otnositelno proizvodnoi”, Matem. sb., 49:1 (1959), 3–12 | MR

[14] Piliya A. D., Fedorov V. I., “Osobennosti polya elektromagnitnoi volny v kholodnoi anizotropnoi plazme s dvumernoi neodnorodnostyu”, ZhETF, 60:1 (1971), 389–399

[15] Remizov A. O., “O nepravilnykh osobykh tochkakh koranga 1 sistem differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnykh”, Differents. uravneniya, 38:8 (2002), 1053–1062 | MR | Zbl

[16] Samovol V. S., “Ekvivalentnost sistem differentsialnykh uravnenii v okrestnosti osoboi tochki”, Tr. MMO, 44, URSS, M., 1982, 213–234 | MR | Zbl

[17] Ilyashenko Yu. S., Yakovenko S. Yu., “Konechno-gladkie normalnye formy lokalnykh semeistv diffeomorfizmov i vektornykh polei”, UMN, 46:1 (1991), 3–39 | MR

[18] Zelikin M. I., Odnorodnye prostranstva i uravnenie Rikkati v variatsionnom ischislenii, Faktorial, M., 1998 | Zbl

[19] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl