Aspherical pro-$p$-groups
Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1639-1670
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of an aspherical pro-$p$-group is introduced. It is proved that if a group $G=F/N$ is aspherical, where $F$ is a free pro-$p$-group, then the relation $\mathbb F_p[[G]]$-module $\overline N=N/N^p[N,N]$ satisfies an assertion of the type of Lyndon's identity theorem. The finite subgroups and the centre of $G$ are described. The structure of an aspherical pro-$p$-group $G$ with a soluble normal subgroup $A\ne\{1\}$ is studied. In particular, if $A\cong\mathbb Z_p$, then $G$ contains a subgroup of finite index of the form $A\leftthreetimes W$ where $W$ is a free pro-$p$-group.
@article{SM_2002_193_11_a2,
author = {O. V. Mel'nikov},
title = {Aspherical pro-$p$-groups},
journal = {Sbornik. Mathematics},
pages = {1639--1670},
publisher = {mathdoc},
volume = {193},
number = {11},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_11_a2/}
}
O. V. Mel'nikov. Aspherical pro-$p$-groups. Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1639-1670. http://geodesic.mathdoc.fr/item/SM_2002_193_11_a2/