Aspherical pro-$p$-groups
Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1639-1670

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an aspherical pro-$p$-group is introduced. It is proved that if a group $G=F/N$ is aspherical, where $F$ is a free pro-$p$-group, then the relation $\mathbb F_p[[G]]$-module $\overline N=N/N^p[N,N]$ satisfies an assertion of the type of Lyndon's identity theorem. The finite subgroups and the centre of $G$ are described. The structure of an aspherical pro-$p$-group $G$ with a soluble normal subgroup $A\ne\{1\}$ is studied. In particular, if $A\cong\mathbb Z_p$, then $G$ contains a subgroup of finite index of the form $A\leftthreetimes W$ where $W$ is a free pro-$p$-group.
@article{SM_2002_193_11_a2,
     author = {O. V. Mel'nikov},
     title = {Aspherical pro-$p$-groups},
     journal = {Sbornik. Mathematics},
     pages = {1639--1670},
     publisher = {mathdoc},
     volume = {193},
     number = {11},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_11_a2/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - Aspherical pro-$p$-groups
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1639
EP  - 1670
VL  - 193
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_11_a2/
LA  - en
ID  - SM_2002_193_11_a2
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T Aspherical pro-$p$-groups
%J Sbornik. Mathematics
%D 2002
%P 1639-1670
%V 193
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_11_a2/
%G en
%F SM_2002_193_11_a2
O. V. Mel'nikov. Aspherical pro-$p$-groups. Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1639-1670. http://geodesic.mathdoc.fr/item/SM_2002_193_11_a2/