Analogues of the Helmholtz resonator in homogenization theory
Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1611-1638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Perturbed two-dimensional boundary-value problems are considered for Helmholtz's equation with Dirichlet and Neumann boundary conditions on a family of arcs obtained from the boundary of a bounded domain $\Omega$ by cutting out a large number of small holes distributed almost periodically and close to one another. Relations between the sizes of the openings and of the boundary ensuring that the solution of the perturbed problem converges to the solutions of the Dirichlet or the Neumann problem in $\Omega$ and outside $\overline\Omega$ are established. In the case when $\Omega$ is a disc, the holes are periodically distributed and the homogenized problems are Dirichlet problems, asymptotic formulae with respect to a small parameter $\varepsilon$ (characterizing the sizes of the openings and the distance between them) are constructed for the poles with small imaginary parts of the analytic continuation of the solution of the perturbed problem and their resonance behaviour is demonstrated.
@article{SM_2002_193_11_a1,
     author = {R. R. Gadyl'shin},
     title = {Analogues of the {Helmholtz} resonator in homogenization theory},
     journal = {Sbornik. Mathematics},
     pages = {1611--1638},
     year = {2002},
     volume = {193},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_11_a1/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - Analogues of the Helmholtz resonator in homogenization theory
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1611
EP  - 1638
VL  - 193
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_11_a1/
LA  - en
ID  - SM_2002_193_11_a1
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T Analogues of the Helmholtz resonator in homogenization theory
%J Sbornik. Mathematics
%D 2002
%P 1611-1638
%V 193
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2002_193_11_a1/
%G en
%F SM_2002_193_11_a1
R. R. Gadyl'shin. Analogues of the Helmholtz resonator in homogenization theory. Sbornik. Mathematics, Tome 193 (2002) no. 11, pp. 1611-1638. http://geodesic.mathdoc.fr/item/SM_2002_193_11_a1/

[1] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[2] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[3] Arsenev A. A., “Ob osobennostyakh analiticheskogo prodolzheniya i rezonansnykh svoistvakh resheniya zadachi rasseyaniya dlya uravneniya Gelmgoltsa”, ZhVM i MF, 12:1 (1971), 112–138 | MR

[4] Beale J. T., “Scattering frequencies of resonators”, Comm. Pure Appl. Math., 26 (1973), 549–564 | DOI | MR

[5] Gadylshin R. R., “Suschestvovanie i asimptotiki polyusov s maloi mnimoi chastyu dlya rezonatora Gelmgoltsa”, UMN, 52:1 (1997), 3–76 | MR | Zbl

[6] Gadylshin R. R., “Sistemy rezonatorov”, Izv. RAN. Ser. matem., 64:3 (2000), 51–97 | MR

[7] Gadyl'shin R. R., “On analog of the Helmholtz resonator in the averaging theory”, CR Acad Sci. Paris Sér. I Math., 329 (1999), 1121–1126 | MR | Zbl

[8] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[9] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[10] Friedman A., Huang C., Yong J., “Effective permeability of the boundary of a domain”, Comm. Partial Differential Equations, 20:1, 2 (1995), 59–102 | DOI | MR | Zbl

[11] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[12] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[13] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[14] Gadylshin R. R., “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19 | MR | Zbl