Commutative $A_\infty$-algebras and the functor~$\mathscr D$
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1557-1571
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the question of calculating the set of equivalence classes of commutative $A_\infty$-algebras and the connection between this question and calculating the functor $\mathscr D$ introduced by Berikashvili. In particular, we show that there are no non-trivial commutative $A_\infty$-structures on a free commutative algebra.
@article{SM_2002_193_10_a7,
author = {S. A. Yakshin},
title = {Commutative $A_\infty$-algebras and the functor~$\mathscr D$},
journal = {Sbornik. Mathematics},
pages = {1557--1571},
publisher = {mathdoc},
volume = {193},
number = {10},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a7/}
}
S. A. Yakshin. Commutative $A_\infty$-algebras and the functor~$\mathscr D$. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1557-1571. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a7/