Submanifolds with semiparallel tensor fields as envelopes
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1493-1505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of connections between submanifolds with semiparallel tensor fields defined in terms of the second fundamental form by means of arbitrary tensor operations and submanifolds on which the matching tensor fields are parallel is completely solved in spaces of constant curvature, in terms of various classes of envelopes.
@article{SM_2002_193_10_a4,
     author = {V. A. Mirzoyan},
     title = {Submanifolds with semiparallel tensor fields as envelopes},
     journal = {Sbornik. Mathematics},
     pages = {1493--1505},
     year = {2002},
     volume = {193},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a4/}
}
TY  - JOUR
AU  - V. A. Mirzoyan
TI  - Submanifolds with semiparallel tensor fields as envelopes
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1493
EP  - 1505
VL  - 193
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a4/
LA  - en
ID  - SM_2002_193_10_a4
ER  - 
%0 Journal Article
%A V. A. Mirzoyan
%T Submanifolds with semiparallel tensor fields as envelopes
%J Sbornik. Mathematics
%D 2002
%P 1493-1505
%V 193
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2002_193_10_a4/
%G en
%F SM_2002_193_10_a4
V. A. Mirzoyan. Submanifolds with semiparallel tensor fields as envelopes. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1493-1505. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a4/

[1] Deprez J., “Semi-parallel hypersurfaces”, Rend. Sem. Mat. Univ. Politec. Torino, 44 (1986), 303–316 | MR | Zbl

[2] Dillen F., Nölker S., “Semi-parallelity, multi-rotation surfaces and the helix-property”, J. Reine Angew. Math., 435 (1993), 33–63 | MR | Zbl

[3] Asperti A. C., Mercuri F., “Semi-parallel immersions into space form”, Boll. Unione Mat. Ital. Sez. B. Artic. Ric. Mat. (8), 7:4 (1994), 833–895 | MR

[4] Lumiste Ü., “Semi-parallel time-like surfaces in Lorentzian spacetime form”, Differential Geom. Appl., 7 (1997), 59–74 | DOI | MR | Zbl

[5] Lumiste Ü., “Isometric semiparallel immersions of two-dimensional Riemannian manifolds into pseudo-Euclidean spaces”, New developments in differential geometry, Proc. Conf. (Budapest, July 27–30, 1996), Kluwer Acad. Publ., Dordrecht, 1999, 243–264 | MR | Zbl

[6] Lumiste Ü., “Semi-symmetric submanifold as the second order envelope of symmetric submanifolds”, Proc. Estonian Acad. Phys. Math., 39 (1990), 1–8 | MR | Zbl

[7] Lumiste Yu. G., “Polusimmetricheskie podmnogoobraziya”, Itogi nauki i tekhn. Problemy geometrii, 23, VINITI, M., 1991, 3–28 | MR

[8] Mirzoyan V. A., “Ric-polusimmetricheskie podmnogoobraziya”, Itogi nauki i tekhn. Problemy geometrii, 23, VINITI, M., 1991, 29–66 | MR

[9] Mirzoyan V. A., “Polusimmetricheskie podmnogoobraziya i ikh razlozhenie v proizvedenie”, Izv. vuzov. Ser. matem., 1991, no. 9, 29–38 | MR

[10] Lumiste Ü., “Submanifolds with parallel fundamental form”, Handbook of differential geometry, V. 1, eds. F. Dillen, L. Verstraelen, North-Holland, Amsterdam, 2000, 779–864 | MR | Zbl

[11] Ferus D., “Symmetric submanifolds of Euclidean space”, Math. Ann., 247 (1980), 81–93 | DOI | MR | Zbl

[12] Takeuchi M., “Parallel submanifolds of space forms”, Manifolds and Lie groups, Papers in honor of Y. Matsushima, Progr. Math., 14, Birkhäuser, Basel, 1981, 429–447 | MR

[13] Backes E., Reckziegel H., “On symmetric submanifolds of spaces of constant curvature”, Math. Ann., 263:4 (1983), 419–433 | DOI | MR | Zbl

[14] Mirzoyan V. A., “$S$-poluparallelnye podmnogoobraziya v prostranstvakh postoyannoi krivizny kak ogibayuschie $s$-parallelnykh podmnogoobrazii”, Izv. NAN Armenii. Ser. matem., 31:5 (1996), 44–56 | MR | Zbl

[15] Mirzoyan V. A., “O $k$-poluparallelnykh podmnogoobraziyakh”, Mezhdunarodnaya geometricheskaya shkola-seminar pamyati N. V. Efimova, Tezisy dokladov (Abrau-Dyurso, 27 sent.–4 okt. 1996 g.), Rostov-na-Donu, 1996, 141–142

[16] Mirzoyan V. A., “Podmnogoobraziya s simmetricheskimi fundamentalnymi formami vysshego poryadka kak ogibayuschie”, Izv. vuzov. Ser. matem., 1997, no. 9, 35–40 | MR | Zbl

[17] Mirzoyan V. A., “Podmnogoobraziya s poluparallelnymi fundamentalnymi formami vysshego poryadka kak ogibayuschie”, Izv. vuzov. Ser. matem., 1998, no. 8, 79–80 | MR | Zbl

[18] Mirzoyan V. A., “Obobscheniya teoremy Yu. Lumiste o poluparallelnykh podmnogoobraziyakh”, Izv. NAN Armenii. Ser. matem., 33:1 (1998), 53–64 | MR | Zbl

[19] Mirzoyan V. A., “Poluparallelnye struktury kak ogibayuschie”, Mezhdunarodnaya geometricheskaya shkola-seminar pamyati N. V. Efimova, Tezisy dokladov (Abrau-Dyurso, 5–11 sent. 1998 g.), Rostov-na-Donu, 1998, 56–57

[20] Mirzoyan V. A., Rimanovy richchi-polusimmetricheskie mnogoobraziya i ikh izometricheskie pogruzheniya v prostranstva postoyannoi krivizny, Dis. $\dots$ dokt. fiz.-matem. nauk, GIUA, Erevan, 1998

[21] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravleniya, 28, VINITI, M., 1988, 5–289

[22] Favar Zh., Kurs lokalnoi differentsialnoi geometrii, IL, M., 1960

[23] Zalgaller V. A., Teoriya ogibayuschikh, Nauka, M., 1975 | MR | Zbl

[24] Kowalski O., Nikčević S. Z., “Contact homogeneity and envelopes of Riemannian metrics”, Beiträge Algebra Geom., 39:1 (1998), 155–167 | MR | Zbl

[25] Mirzoyan V. A., “Klassifikatsiya Ric-poluparallelnykh giperpoverkhnostei v evklidovykh prostranstvakh”, Matem. sb., 191:9 (2000), 65–80 | MR | Zbl

[26] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981