On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1469-1492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New necessary and sufficient conditions for the uniform approximability of functions by polyanalytic polynomials and polyanalytic rational functions on compact subsets of the plane are established. Connections between these approximation problems and the Dirichlet problem for bianalytic functions are also analysed.
@article{SM_2002_193_10_a3,
     author = {J. J. Carmona and P. V. Paramonov and K. Yu. Fedorovskiy},
     title = {On uniform approximation by polyanalytic polynomials and the {Dirichlet} problem for bianalytic functions},
     journal = {Sbornik. Mathematics},
     pages = {1469--1492},
     year = {2002},
     volume = {193},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/}
}
TY  - JOUR
AU  - J. J. Carmona
AU  - P. V. Paramonov
AU  - K. Yu. Fedorovskiy
TI  - On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1469
EP  - 1492
VL  - 193
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/
LA  - en
ID  - SM_2002_193_10_a3
ER  - 
%0 Journal Article
%A J. J. Carmona
%A P. V. Paramonov
%A K. Yu. Fedorovskiy
%T On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions
%J Sbornik. Mathematics
%D 2002
%P 1469-1492
%V 193
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/
%G en
%F SM_2002_193_10_a3
J. J. Carmona; P. V. Paramonov; K. Yu. Fedorovskiy. On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1469-1492. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/

[1] Balk M. B., Polyanalytic functions, Math. Res., 63, Akademie-Verlag, Berlin, 1991 | MR | Zbl

[2] Mergelyan S. N., “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl

[3] Carmona J. J., “Mergelyan approximation theorem for rational modules”, J. Approx. Theory, 44 (1985), 113–126 | DOI | MR | Zbl

[4] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl

[5] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950

[6] Lavrentev M. A., “O funktsiyakh kompleksnogo peremennogo, predstavimykh ryadami polinomov”, Izbrannye trudy. Matem. i mekh., Nauka, M., 1990, 149–185 | MR

[7] Bishop E., “Granichnye mery analiticheskikh differentsialov”, Nekotorye voprosy teorii priblizhenii, IL, M., 1963, 87–100

[8] Carathèodory C., Conformal representations, Dover Publ., New York, 1998

[9] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[10] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | MR | Zbl

[11] Trent T., Wang J. L., “Uniform approximation by rational modules on nowhere dense sets”, Proc. Amer. Math. Soc., 81 (1981), 62–64 | DOI | MR | Zbl

[12] Wang J. L., “A localization operator for rational modules”, Rocky Mountain J. Math., 19:4 (1989), 999–1002 | MR | Zbl

[13] Verdera J., “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pacific J. Math., 159 (1993), 379–396 | MR | Zbl

[14] Fedorovski K. Yu., “On uniform approximation by polyanalytic polynomials on compact subsets of the plane”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 53:3 (1999), 27–39 | MR | Zbl

[15] Davis P., The Schwarz function and its applications, Carus Math. Monogr., 17, The Mathematical Association of America, Washington, DC, 1974 | MR | Zbl

[16] Mazalov M. Ya., “Primer nepostoyannoi bianaliticheskoi funktsii, obraschayuscheisya v nul vsyudu na nigde ne analiticheskoi granitse”, Matem. zametki, 62:4 (1997), 629–632 | MR | Zbl

[17] Boven A., Paramonov P. V., “Approksimatsiya meromorfnymi i tselymi resheniyami ellipticheskikh uravnenii v banakhovykh prostranstvakh raspredelenii”, Matem. sb., 189:4 (1998), 3–24 | MR

[18] Douglas R. G., Shapiro H. S., Shields A. L., “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76 | MR | Zbl

[19] Kusis P., Vvedenie v teoriyu prostranstv $H_p$, Mir, M., 1984 | MR

[20] Johnston E. H., “The boundary modulus of continuity of harmonic functions”, Pacific J. Math., 90 (1980), 87–98 | MR | Zbl

[21] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | Zbl

[22] Rudin W., Real and complex analysis, McGraw-Hill, New York, 1987 | MR | Zbl

[23] Horowitz Ch., “Zeros of functions in the Bergman spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl