@article{SM_2002_193_10_a3,
author = {J. J. Carmona and P. V. Paramonov and K. Yu. Fedorovskiy},
title = {On uniform approximation by polyanalytic polynomials and the {Dirichlet} problem for bianalytic functions},
journal = {Sbornik. Mathematics},
pages = {1469--1492},
year = {2002},
volume = {193},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/}
}
TY - JOUR AU - J. J. Carmona AU - P. V. Paramonov AU - K. Yu. Fedorovskiy TI - On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions JO - Sbornik. Mathematics PY - 2002 SP - 1469 EP - 1492 VL - 193 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/ LA - en ID - SM_2002_193_10_a3 ER -
%0 Journal Article %A J. J. Carmona %A P. V. Paramonov %A K. Yu. Fedorovskiy %T On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions %J Sbornik. Mathematics %D 2002 %P 1469-1492 %V 193 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/ %G en %F SM_2002_193_10_a3
J. J. Carmona; P. V. Paramonov; K. Yu. Fedorovskiy. On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1469-1492. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a3/
[1] Balk M. B., Polyanalytic functions, Math. Res., 63, Akademie-Verlag, Berlin, 1991 | MR | Zbl
[2] Mergelyan S. N., “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl
[3] Carmona J. J., “Mergelyan approximation theorem for rational modules”, J. Approx. Theory, 44 (1985), 113–126 | DOI | MR | Zbl
[4] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl
[5] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950
[6] Lavrentev M. A., “O funktsiyakh kompleksnogo peremennogo, predstavimykh ryadami polinomov”, Izbrannye trudy. Matem. i mekh., Nauka, M., 1990, 149–185 | MR
[7] Bishop E., “Granichnye mery analiticheskikh differentsialov”, Nekotorye voprosy teorii priblizhenii, IL, M., 1963, 87–100
[8] Carathèodory C., Conformal representations, Dover Publ., New York, 1998
[9] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR
[10] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | MR | Zbl
[11] Trent T., Wang J. L., “Uniform approximation by rational modules on nowhere dense sets”, Proc. Amer. Math. Soc., 81 (1981), 62–64 | DOI | MR | Zbl
[12] Wang J. L., “A localization operator for rational modules”, Rocky Mountain J. Math., 19:4 (1989), 999–1002 | MR | Zbl
[13] Verdera J., “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pacific J. Math., 159 (1993), 379–396 | MR | Zbl
[14] Fedorovski K. Yu., “On uniform approximation by polyanalytic polynomials on compact subsets of the plane”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 53:3 (1999), 27–39 | MR | Zbl
[15] Davis P., The Schwarz function and its applications, Carus Math. Monogr., 17, The Mathematical Association of America, Washington, DC, 1974 | MR | Zbl
[16] Mazalov M. Ya., “Primer nepostoyannoi bianaliticheskoi funktsii, obraschayuscheisya v nul vsyudu na nigde ne analiticheskoi granitse”, Matem. zametki, 62:4 (1997), 629–632 | MR | Zbl
[17] Boven A., Paramonov P. V., “Approksimatsiya meromorfnymi i tselymi resheniyami ellipticheskikh uravnenii v banakhovykh prostranstvakh raspredelenii”, Matem. sb., 189:4 (1998), 3–24 | MR
[18] Douglas R. G., Shapiro H. S., Shields A. L., “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76 | MR | Zbl
[19] Kusis P., Vvedenie v teoriyu prostranstv $H_p$, Mir, M., 1984 | MR
[20] Johnston E. H., “The boundary modulus of continuity of harmonic functions”, Pacific J. Math., 90 (1980), 87–98 | MR | Zbl
[21] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | Zbl
[22] Rudin W., Real and complex analysis, McGraw-Hill, New York, 1987 | MR | Zbl
[23] Horowitz Ch., “Zeros of functions in the Bergman spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl