Generalized Tsen's theorem and rationally connected Fano fibrations
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1443-1468

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence is proved and an explicit algebraic description is given for sections of a fibration $X/C$ over a curve $C$ whose general fibre is a Fano complete intersection in a product of weighted projective spaces. It is proved also that a fibration $X/\mathbb P^1$ whose general fibre is a smooth Fano threefold is rationally connected.
@article{SM_2002_193_10_a2,
     author = {F. Campana and Th. Peternell and A. V. Pukhlikov},
     title = {Generalized {Tsen's} theorem and rationally connected {Fano} fibrations},
     journal = {Sbornik. Mathematics},
     pages = {1443--1468},
     publisher = {mathdoc},
     volume = {193},
     number = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/}
}
TY  - JOUR
AU  - F. Campana
AU  - Th. Peternell
AU  - A. V. Pukhlikov
TI  - Generalized Tsen's theorem and rationally connected Fano fibrations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1443
EP  - 1468
VL  - 193
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/
LA  - en
ID  - SM_2002_193_10_a2
ER  - 
%0 Journal Article
%A F. Campana
%A Th. Peternell
%A A. V. Pukhlikov
%T Generalized Tsen's theorem and rationally connected Fano fibrations
%J Sbornik. Mathematics
%D 2002
%P 1443-1468
%V 193
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/
%G en
%F SM_2002_193_10_a2
F. Campana; Th. Peternell; A. V. Pukhlikov. Generalized Tsen's theorem and rationally connected Fano fibrations. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1443-1468. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/