@article{SM_2002_193_10_a2,
author = {F. Campana and Th. Peternell and A. V. Pukhlikov},
title = {Generalized {Tsen's} theorem and rationally connected {Fano} fibrations},
journal = {Sbornik. Mathematics},
pages = {1443--1468},
year = {2002},
volume = {193},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/}
}
TY - JOUR AU - F. Campana AU - Th. Peternell AU - A. V. Pukhlikov TI - Generalized Tsen's theorem and rationally connected Fano fibrations JO - Sbornik. Mathematics PY - 2002 SP - 1443 EP - 1468 VL - 193 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/ LA - en ID - SM_2002_193_10_a2 ER -
F. Campana; Th. Peternell; A. V. Pukhlikov. Generalized Tsen's theorem and rationally connected Fano fibrations. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1443-1468. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/
[1] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1988 | MR
[2] Tsen C. C., “Zur Stufentheorie der quasialgebraisch-Abgeschlossenheit kommutativer Körper”, J. Chinese Math. Soc., 1 (1936), 81–92 | Zbl
[3] Kollár J., Rational curves on algebraic varieties, Springer-Verlag, Berlin, 1996 | MR
[4] Graber T., Harris J., Starr J., Families of rationally connected varieties, E-print math.AG/0109220
[5] Dolgachev I., “Newton polyhedra and factorial rings”, J. Pure Appl. Algebra, 18 (1980), 253–258 | DOI | MR | Zbl
[6] Dolgachev I., “Weighted projective varieties”, Group actions and vector fields, Proc. Pol.-North. Amer. Semin. (Vancouver 1981. 1982), Lecture Notes in Math., 956, 34–71 | MR | Zbl
[7] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geom., 1:3 (1992), 429–448 | MR | Zbl
[8] Iskovskikh V. A., Prokhorov Yu. G., Fano varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999 | MR