Generalized Tsen's theorem and rationally connected Fano fibrations
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1443-1468
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence is proved and an explicit algebraic description is given for sections of a fibration $X/C$ over a curve $C$ whose general fibre is a Fano complete intersection in a product of weighted projective spaces. It is proved also that a fibration $X/\mathbb P^1$ whose general fibre is a smooth Fano threefold is rationally connected.
@article{SM_2002_193_10_a2,
author = {F. Campana and Th. Peternell and A. V. Pukhlikov},
title = {Generalized {Tsen's} theorem and rationally connected {Fano} fibrations},
journal = {Sbornik. Mathematics},
pages = {1443--1468},
publisher = {mathdoc},
volume = {193},
number = {10},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/}
}
TY - JOUR AU - F. Campana AU - Th. Peternell AU - A. V. Pukhlikov TI - Generalized Tsen's theorem and rationally connected Fano fibrations JO - Sbornik. Mathematics PY - 2002 SP - 1443 EP - 1468 VL - 193 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/ LA - en ID - SM_2002_193_10_a2 ER -
F. Campana; Th. Peternell; A. V. Pukhlikov. Generalized Tsen's theorem and rationally connected Fano fibrations. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1443-1468. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/