Generalized Tsen's theorem and rationally connected Fano fibrations
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1443-1468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence is proved and an explicit algebraic description is given for sections of a fibration $X/C$ over a curve $C$ whose general fibre is a Fano complete intersection in a product of weighted projective spaces. It is proved also that a fibration $X/\mathbb P^1$ whose general fibre is a smooth Fano threefold is rationally connected.
@article{SM_2002_193_10_a2,
     author = {F. Campana and Th. Peternell and A. V. Pukhlikov},
     title = {Generalized {Tsen's} theorem and rationally connected {Fano} fibrations},
     journal = {Sbornik. Mathematics},
     pages = {1443--1468},
     year = {2002},
     volume = {193},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/}
}
TY  - JOUR
AU  - F. Campana
AU  - Th. Peternell
AU  - A. V. Pukhlikov
TI  - Generalized Tsen's theorem and rationally connected Fano fibrations
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1443
EP  - 1468
VL  - 193
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/
LA  - en
ID  - SM_2002_193_10_a2
ER  - 
%0 Journal Article
%A F. Campana
%A Th. Peternell
%A A. V. Pukhlikov
%T Generalized Tsen's theorem and rationally connected Fano fibrations
%J Sbornik. Mathematics
%D 2002
%P 1443-1468
%V 193
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/
%G en
%F SM_2002_193_10_a2
F. Campana; Th. Peternell; A. V. Pukhlikov. Generalized Tsen's theorem and rationally connected Fano fibrations. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1443-1468. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a2/

[1] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1988 | MR

[2] Tsen C. C., “Zur Stufentheorie der quasialgebraisch-Abgeschlossenheit kommutativer Körper”, J. Chinese Math. Soc., 1 (1936), 81–92 | Zbl

[3] Kollár J., Rational curves on algebraic varieties, Springer-Verlag, Berlin, 1996 | MR

[4] Graber T., Harris J., Starr J., Families of rationally connected varieties, E-print math.AG/0109220

[5] Dolgachev I., “Newton polyhedra and factorial rings”, J. Pure Appl. Algebra, 18 (1980), 253–258 | DOI | MR | Zbl

[6] Dolgachev I., “Weighted projective varieties”, Group actions and vector fields, Proc. Pol.-North. Amer. Semin. (Vancouver 1981. 1982), Lecture Notes in Math., 956, 34–71 | MR | Zbl

[7] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geom., 1:3 (1992), 429–448 | MR | Zbl

[8] Iskovskikh V. A., Prokhorov Yu. G., Fano varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999 | MR