Generalized direct Lyapunov method for the analysis of stability and attraction in general time systems
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1411-1441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized direct Lyapunov method is put forward for the study of stability and attraction in general time systems of the following types: the classical dynamical system in the sense of Birkhoff, the general system in the sense of Zubov, the general system in the sense of Seibert, the general system with delay, and the general “input-output” system. For such systems, with the help of generalized Lyapunov functions with respect to two filters, two quasifilters, or two filter bases, necessary and sufficient conditions for stability and attraction are obtained under minimal assumptions about the mathematical structure of the general system.
@article{SM_2002_193_10_a1,
     author = {O. V. Druzhinina and A. A. Shestakov},
     title = {Generalized direct {Lyapunov} method for the~analysis of stability and attraction in general time systems},
     journal = {Sbornik. Mathematics},
     pages = {1411--1441},
     year = {2002},
     volume = {193},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/}
}
TY  - JOUR
AU  - O. V. Druzhinina
AU  - A. A. Shestakov
TI  - Generalized direct Lyapunov method for the analysis of stability and attraction in general time systems
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1411
EP  - 1441
VL  - 193
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/
LA  - en
ID  - SM_2002_193_10_a1
ER  - 
%0 Journal Article
%A O. V. Druzhinina
%A A. A. Shestakov
%T Generalized direct Lyapunov method for the analysis of stability and attraction in general time systems
%J Sbornik. Mathematics
%D 2002
%P 1411-1441
%V 193
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/
%G en
%F SM_2002_193_10_a1
O. V. Druzhinina; A. A. Shestakov. Generalized direct Lyapunov method for the analysis of stability and attraction in general time systems. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1411-1441. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/

[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Izd-vo Kharkovskogo matem. ob-va, Kharkov, 1892

[2] Puankare A., Izbrannye trudy, T. 1, 1971; Т. 2, Наука, М., 1972

[3] Chetaev N. G., Ustoichivost dvizheniya, GITTL, M., 1955

[4] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987 | MR

[5] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i prilozheniya, Nauchnyi mir, M., 2001 | MR | Zbl

[6] Rush N., Abets P., Lapua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980 | MR

[7] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[8] Shestakov A. A., Obobschennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami, Nauka, M., 1990 | MR

[9] Kato J., Martynyuk A. A., Shestakov A. A., Stability of motion of nonautonomous systems (method of limiting equations), Gordon and Breach, Amsterdam, 1996 | MR | Zbl

[10] Rumyantsev V. V., “O razvitii issledovanii v SSSR po teorii ustoichivosti dvizheniya”, Differents. uravneniya, 19:5 (1983), 739–776 | MR | Zbl

[11] Rumyantsev V. V., “Ob ustoichivosti dvizheniya po otnosheniyu k chasti peremennykh”, Vestn. MGU. Ser. matem., mekh., fiz., astron., khim., 1957, no. 4, 9–16

[12] Persidskii K. P., Izbrannye trudy, T. 1, 2, Nauka, Alma-Ata, 1973

[13] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[14] Zubov V. I., Metody Lyapunova i ikh primenenie, Izd-vo LGU, L., 1957

[15] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[16] Movchan A. A., “Ustoichivost protsessov po dvum metrikam”, Prikl. matem. i mekh., 24:6 (1960), 988–1001 | Zbl

[17] Barbashin E. A., “K teorii obobschennykh dinamicheskikh sistem”, Uchenye zapiski MGU, 135:2 (1948), 110–133 | MR

[18] Bushaw D. D., “A stability criterion for general systems”, J. Math. Systems Theory, 1:1 (1967), 79–88 | DOI | MR | Zbl

[19] Nemytskii V. V., “K teorii orbit obschikh dinamicheskikh sistem”, Matem. sb., 23(65):2 (1948), 161–186 | MR | Zbl

[20] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949

[21] Yoshii S., General stability of sets, M.S. thesis, Case Western Reserve Univ., Cleveland, 1971

[22] Sirazetdinov T. K., Ustoichivost sistem s raspredelennymi parametrami, Nauka, Novosibirsk, 1987 | MR | Zbl

[23] Malyshev Yu. V., Metody obobschennykh funktsii Lyapunova., Diss. $\dots$ dokt. fiz.-matem. nauk, Sverdlovsk, 1991

[24] Merenkov Yu. N., Ustoichivopodobnye svoistva differentsialnykh vklyuchenii, nechetkikh i stokhasticheskikh differentsialnykh uravnenii, Izd-vo RUDN, M., 2000

[25] Druzhinina O. V., Shestakov A. A., “O svyazi ustoichivosti po Lyapunovu s ustoichivostyu po Puankare dlya dvizhenii nelineinoi statsionarnoi dinamicheskoi sistemy”, Dokl. RAN, 351:1 (1996), 48–51

[26] Druzhinina O. V., Shestakov A. A., “O ponyatiyakh orbitalnoi ustoichivosti i fazovoi ustoichivosti dvizhenii dinamicheskoi sistemy”, Dokl. RAN, 355:3 (1997), 339–341

[27] Druzhinina O. V., Shestakov A. A., “O neustoichivosti sostoyaniya ravnovesiya po pervomu priblizheniyu statsionarnogo nelineinogo uravneniya v gilbertovom prostranstve”, Differents. uravneniya, 35:6 (1999), 840 | MR | Zbl

[28] Druzhinina O. V., Shestakov A. A., “O rasshirenii ponyatiya orbitalnoi ustoichivosti traektorii dinamicheskoi sistemy”, Dokl. RAN, 377:5 (2001), 621–625 | MR

[29] Birkgof Dzh., Dinamicheskie sistemy, Gostekhizdat, M., 1941

[30] Bhatia N. P., Szegö G. P., Stability theory of dynamical systems, Springer-Verlag, Berlin, 1970 | MR | Zbl

[31] Seibert P., “A unified theory of Lyapunov stability”, Funkcial. Ekvac., 15:3 (1972), 139–147 | MR | Zbl

[32] Gilbert I. E., Knops R. T., “Stability of general systems”, Arch. Ration. Mech. Anal., 25:4 (1967), 271–297 | DOI | MR

[33] Shestakov A. A., Merenkov Yu. N., “Ob opredeleniyakh i usloviyakh ustoichivosti po Lyapunovu dlya abstraktnykh dinamicheskikh protsessov”, Sb. nauchn. trudov, 140, VZIIT MPS, M., 1987, 40–50

[34] Mesarovich M., Takakhara Ya., Obschaya teoriya sistem: matematicheskie osnovy, Mir, M., 1978

[35] Ura T., “On the flow outside a closed invariant set: stability, relative stability and saddle sets”, Contrib. Differential Equations, 3:3 (1964), 249–294 | MR | Zbl

[36] Auslander J., Seibert P., “Prolongations and stability in dynamical systems”, Ann. Inst. Fourier (Grenoble), 14 (1964), 237–267 | MR

[37] Moiseev N. D., Ocherki razvitiya teorii ustoichivosti, GITTL, M.–L., 1949

[38] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[39] Auslander J., “Filter stability in dynamical systems”, SIAM J. Math. Anal., 8:4 (1977), 573–579 | DOI | MR | Zbl

[40] Massera J. L., “Contributions to stability theory”, Ann. of Math. (2), 64 (1956), 182–206 | DOI | MR | Zbl