Generalized direct Lyapunov method for the~analysis of stability and attraction in general time systems
Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1411-1441
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalized direct Lyapunov method is put forward for the study of stability and attraction in general time systems of the following types: the classical dynamical system in the sense of Birkhoff, the general system in the sense of Zubov, the general system in the sense of Seibert, the general system with delay, and the general “input-output” system. For such systems, with the help of generalized Lyapunov functions with respect to two filters, two quasifilters, or two filter bases, necessary and sufficient conditions for stability and attraction are obtained under minimal assumptions about the mathematical structure of the general system.
@article{SM_2002_193_10_a1,
author = {O. V. Druzhinina and A. A. Shestakov},
title = {Generalized direct {Lyapunov} method for the~analysis of stability and attraction in general time systems},
journal = {Sbornik. Mathematics},
pages = {1411--1441},
publisher = {mathdoc},
volume = {193},
number = {10},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/}
}
TY - JOUR AU - O. V. Druzhinina AU - A. A. Shestakov TI - Generalized direct Lyapunov method for the~analysis of stability and attraction in general time systems JO - Sbornik. Mathematics PY - 2002 SP - 1411 EP - 1441 VL - 193 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/ LA - en ID - SM_2002_193_10_a1 ER -
%0 Journal Article %A O. V. Druzhinina %A A. A. Shestakov %T Generalized direct Lyapunov method for the~analysis of stability and attraction in general time systems %J Sbornik. Mathematics %D 2002 %P 1411-1441 %V 193 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/ %G en %F SM_2002_193_10_a1
O. V. Druzhinina; A. A. Shestakov. Generalized direct Lyapunov method for the~analysis of stability and attraction in general time systems. Sbornik. Mathematics, Tome 193 (2002) no. 10, pp. 1411-1441. http://geodesic.mathdoc.fr/item/SM_2002_193_10_a1/