@article{SM_2001_192_9_a5,
author = {A. A. Tolstonogov},
title = {Existence of an~optimal control without convexity assumptions in a~first-order evolution system},
journal = {Sbornik. Mathematics},
pages = {1381--1398},
year = {2001},
volume = {192},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a5/}
}
A. A. Tolstonogov. Existence of an optimal control without convexity assumptions in a first-order evolution system. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1381-1398. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a5/
[1] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1979
[2] Gabasov R., Kirillova F. M., “Metody optimalnogo upravleniya”, Itogi nauki i tekhn. Sovr. probl. matem., 6, VINITI, M., 1976, 133–261 | MR
[3] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972 | MR
[4] Ahmed N. U., Teo K. L., Optimal control of distributed parameter systems, North-Holland, New York, 1981 | MR | Zbl
[5] Litvinov V. G., Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozheniyami k mekhanike, Nauka, M., 1987 | MR
[6] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Naukova dumka, Kiev, 1988 | MR
[7] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999
[8] Suryanarayn M. B., “Existence theorems for optimization problems concerning linear, hyperbolic partial differential equations without convexity conditions”, J. Optim. Theory Appl., 19:1 (1976), 47–61 | DOI | MR
[9] Raymond J. P., “Existence theorems without convexity assumptions for optimal control problems governed by parabolic and elliptic systems”, Appl. Math. Optim., 26 (1992), 39–62 | DOI | MR | Zbl
[10] Bressan A., Flores F., “Multivariable Aumann integrals and controlled wave equation”, J. Math. Anal. Appl., 189:2 (1995), 315–334 | DOI | MR | Zbl
[11] Tolstonogov D. A., “O minimume v variatsionnykh ellipticheskikh zadachakh bez predpolozheniya vypuklosti”, Matem. zametki, 65:1 (1999), 130–142 | MR | Zbl
[12] Tolstonogov A. A., “Teorema suschestvovaniya optimalnogo upravleniya v zadache Gursa–Darbu bez predpolozheniya vypuklosti”, Izv. RAN. Ser. matem., 64:4 (2000), 163–182 | MR | Zbl
[13] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[14] Zeidler E., Nonlinear functional analysis and its applications, V. II, Springer-Verlag, New York, 1990 | MR
[15] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959
[16] Brezis H., Opérateurs maximaux monotones et semi-groupes de contractious dans les espaces de Hilbert, North-Holand, Amsterdam, 1973 | MR
[17] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl
[18] Himmelberg C. J., “Measurable relation”, Fundamenta Math., 87 (1975), 53–72 | MR | Zbl
[19] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[20] Cesari L., Hou S. H., “Existence of solution and existence of optimal solutions. The quasilinear case”, Rend. Circ. Math. Palermo. (2), 34:1 (1985), 5–45 | DOI | MR | Zbl