Existence of an optimal control without convexity assumptions in a first-order evolution system
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1381-1398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An existence theorem is proved for an optimal control problem with constraints that is described by a first-order linear evolution equation, without the usual convexity assumptions relating to the control. The result is obtained by using properties of a multivalued integral and quasi-concavity conditions relating to the state variable. An example of a parabolic control system is treated at length.
@article{SM_2001_192_9_a5,
     author = {A. A. Tolstonogov},
     title = {Existence of an~optimal control without convexity assumptions in a~first-order evolution system},
     journal = {Sbornik. Mathematics},
     pages = {1381--1398},
     year = {2001},
     volume = {192},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a5/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Existence of an optimal control without convexity assumptions in a first-order evolution system
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1381
EP  - 1398
VL  - 192
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_9_a5/
LA  - en
ID  - SM_2001_192_9_a5
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Existence of an optimal control without convexity assumptions in a first-order evolution system
%J Sbornik. Mathematics
%D 2001
%P 1381-1398
%V 192
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2001_192_9_a5/
%G en
%F SM_2001_192_9_a5
A. A. Tolstonogov. Existence of an optimal control without convexity assumptions in a first-order evolution system. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1381-1398. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a5/

[1] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1979

[2] Gabasov R., Kirillova F. M., “Metody optimalnogo upravleniya”, Itogi nauki i tekhn. Sovr. probl. matem., 6, VINITI, M., 1976, 133–261 | MR

[3] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972 | MR

[4] Ahmed N. U., Teo K. L., Optimal control of distributed parameter systems, North-Holland, New York, 1981 | MR | Zbl

[5] Litvinov V. G., Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozheniyami k mekhanike, Nauka, M., 1987 | MR

[6] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Naukova dumka, Kiev, 1988 | MR

[7] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[8] Suryanarayn M. B., “Existence theorems for optimization problems concerning linear, hyperbolic partial differential equations without convexity conditions”, J. Optim. Theory Appl., 19:1 (1976), 47–61 | DOI | MR

[9] Raymond J. P., “Existence theorems without convexity assumptions for optimal control problems governed by parabolic and elliptic systems”, Appl. Math. Optim., 26 (1992), 39–62 | DOI | MR | Zbl

[10] Bressan A., Flores F., “Multivariable Aumann integrals and controlled wave equation”, J. Math. Anal. Appl., 189:2 (1995), 315–334 | DOI | MR | Zbl

[11] Tolstonogov D. A., “O minimume v variatsionnykh ellipticheskikh zadachakh bez predpolozheniya vypuklosti”, Matem. zametki, 65:1 (1999), 130–142 | MR | Zbl

[12] Tolstonogov A. A., “Teorema suschestvovaniya optimalnogo upravleniya v zadache Gursa–Darbu bez predpolozheniya vypuklosti”, Izv. RAN. Ser. matem., 64:4 (2000), 163–182 | MR | Zbl

[13] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[14] Zeidler E., Nonlinear functional analysis and its applications, V. II, Springer-Verlag, New York, 1990 | MR

[15] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[16] Brezis H., Opérateurs maximaux monotones et semi-groupes de contractious dans les espaces de Hilbert, North-Holand, Amsterdam, 1973 | MR

[17] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl

[18] Himmelberg C. J., “Measurable relation”, Fundamenta Math., 87 (1975), 53–72 | MR | Zbl

[19] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[20] Cesari L., Hou S. H., “Existence of solution and existence of optimal solutions. The quasilinear case”, Rend. Circ. Math. Palermo. (2), 34:1 (1985), 5–45 | DOI | MR | Zbl