On identities of free finitely generated alternative algebras over a~field of characteristic~3
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1365-1380

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1981 Filippov solved in the affirmative Shestakov's problem on the strictness of the inclusions in the chains of varieties generated by free alternative and Mal'cev algebras of finite rank over a field of characteristic distinct from 2 and 3. In the present paper an analogous result is proved for alternative algebras over a field of characteristic 3. The proof is based on the construction of three families of identities that hold on the algebras of the corresponding rank. A disproof of the identities on algebras of larger rank is carried out with the help of a prime commutative alternative algebra. It is also proved that in varieties of alternative algebras of finite basis rank over a field of characteristic 3 every soluble algebra is nilpotent.
@article{SM_2001_192_9_a4,
     author = {S. V. Pchelintsev},
     title = {On identities of free finitely generated alternative algebras over a~field of characteristic~3},
     journal = {Sbornik. Mathematics},
     pages = {1365--1380},
     publisher = {mathdoc},
     volume = {192},
     number = {9},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a4/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - On identities of free finitely generated alternative algebras over a~field of characteristic~3
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1365
EP  - 1380
VL  - 192
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_9_a4/
LA  - en
ID  - SM_2001_192_9_a4
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T On identities of free finitely generated alternative algebras over a~field of characteristic~3
%J Sbornik. Mathematics
%D 2001
%P 1365-1380
%V 192
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_9_a4/
%G en
%F SM_2001_192_9_a4
S. V. Pchelintsev. On identities of free finitely generated alternative algebras over a~field of characteristic~3. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1365-1380. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a4/