On $(v,k)$-configurations
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1341-1364
Cet article a éte moissonné depuis la source Math-Net.Ru
New combinatorial objects, which we call $(v,k)$-configurations, are introduced and studied. They occur as a result of weakening the conditions defining well-known combinatorial objects, the $(v,k,\lambda)$-configurations. Existence results for $(v,k)$-configurations are proved and methods for constructing them are indicated, based, in particular, upon group-theoretic constructions and quadratic residues modulo a prime. An extended list of examples of $(v,k)$-configurations, including several infinite series, is presented.
@article{SM_2001_192_9_a3,
author = {F. M. Malyshev and V. E. Tarakanov},
title = {On $(v,k)$-configurations},
journal = {Sbornik. Mathematics},
pages = {1341--1364},
year = {2001},
volume = {192},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a3/}
}
F. M. Malyshev; V. E. Tarakanov. On $(v,k)$-configurations. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1341-1364. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a3/
[1] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977
[2] Kholl M., Kombinatorika, Mir, M., 1970 | MR
[3] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR | Zbl
[4] Kameron P., van Lint Dzh., Teoriya grafov, teoriya kodirovaniya i blok-skhemy, Nauka, M., 1980 | MR
[5] Kartesi F., Vvedenie v konechnye geometrii, Nauka, M., 1980 | MR
[6] Tarakanov V. E., Kombinatornye zadachi i $(0,1)$-matritsy, Nauka, M., 1985 | MR
[7] Kharari F., Teoriya grafov, Mir, M., 1973 | MR